极小同胚与拓扑K理论

Pub Date : 2020-12-20 DOI:10.4171/ggd/707
R. Deeley, I. Putnam, Karen R. Strung
{"title":"极小同胚与拓扑K理论","authors":"R. Deeley, I. Putnam, Karen R. Strung","doi":"10.4171/ggd/707","DOIUrl":null,"url":null,"abstract":"The Lefschetz fixed point theorem provides a powerful obstruction to the existence of minimal homeomorphisms on well-behaved spaces such as finite CW-complexes. We show that these obstructions do not hold for more general spaces. More precisely, minimal homeomorphisms are constructed on space with prescribed $K$-theory or cohomology. We also allow for some control of the map on $K$-theory and cohomology induced from these minimal homeomorphisms. This allows for the construction of many minimal homeomorphisms that are not homotopic to the identity. Applications to $C^*$-algebras will be discussed in another paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Minimal homeomorphisms and topological $K$-theory\",\"authors\":\"R. Deeley, I. Putnam, Karen R. Strung\",\"doi\":\"10.4171/ggd/707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lefschetz fixed point theorem provides a powerful obstruction to the existence of minimal homeomorphisms on well-behaved spaces such as finite CW-complexes. We show that these obstructions do not hold for more general spaces. More precisely, minimal homeomorphisms are constructed on space with prescribed $K$-theory or cohomology. We also allow for some control of the map on $K$-theory and cohomology induced from these minimal homeomorphisms. This allows for the construction of many minimal homeomorphisms that are not homotopic to the identity. Applications to $C^*$-algebras will be discussed in another paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Lefschetz不动点定理为良好行为空间(如有限CW复形)上的极小同胚的存在提供了有力的阻碍。我们表明,这些障碍物不适用于更一般的空间。更确切地说,极小同胚是用规定的$K$-理论或上同调在空间上构造的。我们还允许对$K$-理论上的映射和由这些最小同胚诱导的上同调进行一些控制。这允许构造许多对恒等式不是同宗的极小同胚。$C^*$-代数的应用将在另一篇论文中讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Minimal homeomorphisms and topological $K$-theory
The Lefschetz fixed point theorem provides a powerful obstruction to the existence of minimal homeomorphisms on well-behaved spaces such as finite CW-complexes. We show that these obstructions do not hold for more general spaces. More precisely, minimal homeomorphisms are constructed on space with prescribed $K$-theory or cohomology. We also allow for some control of the map on $K$-theory and cohomology induced from these minimal homeomorphisms. This allows for the construction of many minimal homeomorphisms that are not homotopic to the identity. Applications to $C^*$-algebras will be discussed in another paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信