具有玫瑰图环的五次哈密顿系统的阿贝尔积分的零点数

IF 0.4 Q4 MATHEMATICS
Aiyong Chen, Huiyang Zhang
{"title":"具有玫瑰图环的五次哈密顿系统的阿贝尔积分的零点数","authors":"Aiyong Chen, Huiyang Zhang","doi":"10.1080/1726037X.2020.1774157","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the near-Hamiltonian system where a < 0, 0 < |ε| << 1, f (x, y) and g(x, y) are polynomials of degree n ( n = 2 m , m ≥ 3, m ∈ N ). The number of isolated zeros of the corresponding Abelian integral for h ∈ is estimated.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"109 - 97"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1774157","citationCount":"0","resultStr":"{\"title\":\"The Number of Zeros of Abelian Integral for a Quintic Hamiltonian Systems With a Rose-Figure Loop\",\"authors\":\"Aiyong Chen, Huiyang Zhang\",\"doi\":\"10.1080/1726037X.2020.1774157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the near-Hamiltonian system where a < 0, 0 < |ε| << 1, f (x, y) and g(x, y) are polynomials of degree n ( n = 2 m , m ≥ 3, m ∈ N ). The number of isolated zeros of the corresponding Abelian integral for h ∈ is estimated.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"109 - 97\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1774157\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1774157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1774157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

抽象在这个文章,我们认为《near-Hamiltonian系统在a < 0, 0 < |ε| < < 1,f (x, y)和g (x, y)是学位中的polynomials n (n = 2米(6.5英尺),≥3,m∈n)。孤立之墙当家》corresponding Abelian for h∈is estimated组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Number of Zeros of Abelian Integral for a Quintic Hamiltonian Systems With a Rose-Figure Loop
Abstract In this article, we consider the near-Hamiltonian system where a < 0, 0 < |ε| << 1, f (x, y) and g(x, y) are polynomials of degree n ( n = 2 m , m ≥ 3, m ∈ N ). The number of isolated zeros of the corresponding Abelian integral for h ∈ is estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信