广义(Φ, f)-均值差分的界

IF 0.5 Q3 MATHEMATICS
S. Dragomir
{"title":"广义(Φ, f)-均值差分的界","authors":"S. Dragomir","doi":"10.4067/S0719-06462020000100001","DOIUrl":null,"url":null,"abstract":"In this paper we establish some bounds for the \\( (\\Phi;f) \\)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the Generalized (Φ, f)-Mean Difference\",\"authors\":\"S. Dragomir\",\"doi\":\"10.4067/S0719-06462020000100001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish some bounds for the \\\\( (\\\\Phi;f) \\\\)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462020000100001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462020000100001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为在可测量空间的一般设置中引入的\((\Phi;f)\)-均值差和Lebesgue积分建立了一些界,Lebesgue整数是基尼均值差的两个函数的推广,已被经济学家和社会学家广泛用于测量经济不平等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the Generalized (Φ, f)-Mean Difference
In this paper we establish some bounds for the \( (\Phi;f) \)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信