基于生物医学文档和健康记录聚类的鸡群优化改进远程医疗应用

Q3 Business, Management and Accounting
M. Sundarambal, Raman Sandhiya
{"title":"基于生物医学文档和健康记录聚类的鸡群优化改进远程医疗应用","authors":"M. Sundarambal, Raman Sandhiya","doi":"10.1504/ijenm.2019.10024736","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to develop an efficient ontology enabled chicken swarm optimisation (CSO) based clustering algorithm with dynamic dimension reduction (DDR) to efficiently cluster biomedical documents and health records to facilitate telemedicine applications. A total of 350 documents and health records are collected from PubMed repository for telemedicine applications. First, the documents are pre-processed via semantic annotation and concept mapping while term frequency and inverse gravity moment (TF-IGM) factor is used to improve document representation and the modified n-gram resolves the substitution and deletion malpractices. DDR technique reduces feature space dimension and prunes non-useful text features to increase the clustering accuracy by tackling the high dimensionality problem. Finally, the clusters are formed by CSO clustering. Experimental simulations prove that the CSO-DDR clustering model is significantly efficient than the traditional algorithms and ensures reliable and adaptive telemedicine applications with better clustering of biomedical documents and health records.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chicken swarm optimisation based clustering of biomedical documents and health records to improve telemedicine applications\",\"authors\":\"M. Sundarambal, Raman Sandhiya\",\"doi\":\"10.1504/ijenm.2019.10024736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to develop an efficient ontology enabled chicken swarm optimisation (CSO) based clustering algorithm with dynamic dimension reduction (DDR) to efficiently cluster biomedical documents and health records to facilitate telemedicine applications. A total of 350 documents and health records are collected from PubMed repository for telemedicine applications. First, the documents are pre-processed via semantic annotation and concept mapping while term frequency and inverse gravity moment (TF-IGM) factor is used to improve document representation and the modified n-gram resolves the substitution and deletion malpractices. DDR technique reduces feature space dimension and prunes non-useful text features to increase the clustering accuracy by tackling the high dimensionality problem. Finally, the clusters are formed by CSO clustering. Experimental simulations prove that the CSO-DDR clustering model is significantly efficient than the traditional algorithms and ensures reliable and adaptive telemedicine applications with better clustering of biomedical documents and health records.\",\"PeriodicalId\":39284,\"journal\":{\"name\":\"International Journal of Enterprise Network Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijenm.2019.10024736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijenm.2019.10024736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是开发一种高效的基于本体的鸡群优化(CSO)聚类算法,该算法具有动态降维(DDR)功能,可以有效地对生物医学文档和健康记录进行聚类,以促进远程医疗应用。从PubMed存储库中总共收集了350份用于远程医疗应用的文件和健康记录。首先,通过语义标注和概念映射对文档进行预处理,同时使用术语频率和反重力矩因子来改进文档表示,修改后的n-gram解决了替换和删除的弊端。DDR技术通过降低特征空间维数和修剪无用的文本特征来解决高维问题,从而提高聚类精度。最后,通过CSO聚类形成聚类。实验仿真证明,CSO-DR聚类模型比传统算法具有显著的效率,并通过更好的生物医学文档和健康记录聚类确保了可靠和自适应的远程医疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chicken swarm optimisation based clustering of biomedical documents and health records to improve telemedicine applications
The aim of this paper is to develop an efficient ontology enabled chicken swarm optimisation (CSO) based clustering algorithm with dynamic dimension reduction (DDR) to efficiently cluster biomedical documents and health records to facilitate telemedicine applications. A total of 350 documents and health records are collected from PubMed repository for telemedicine applications. First, the documents are pre-processed via semantic annotation and concept mapping while term frequency and inverse gravity moment (TF-IGM) factor is used to improve document representation and the modified n-gram resolves the substitution and deletion malpractices. DDR technique reduces feature space dimension and prunes non-useful text features to increase the clustering accuracy by tackling the high dimensionality problem. Finally, the clusters are formed by CSO clustering. Experimental simulations prove that the CSO-DDR clustering model is significantly efficient than the traditional algorithms and ensures reliable and adaptive telemedicine applications with better clustering of biomedical documents and health records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信