用两种方法求解环上的ECC [ε],ε4=0

IF 0.7 Q2 MATHEMATICS
Bilel Selikh, A. Chillali, Douadi Mihoubi, N. Ghadbane
{"title":"用两种方法求解环上的ECC [ε],ε4=0","authors":"Bilel Selikh, A. Chillali, Douadi Mihoubi, N. Ghadbane","doi":"10.32513/tmj/19322008155","DOIUrl":null,"url":null,"abstract":"Let F3d is the finite field of order 3d with d be a positive integer, we consider A4:=F3d[e]=F3d[X]/(X4) is a finite quotient ring, where e4=0. In this paper, we will show an example of encryption and decryption. Firstly, we will present the elliptic curve over this ring. In addition, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. Precisely, we give a numerical example of cryptography (encryption and decryption) by using two methods with a secret key.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECC over the ring F3d[ε],ε4=0 by using two methods\",\"authors\":\"Bilel Selikh, A. Chillali, Douadi Mihoubi, N. Ghadbane\",\"doi\":\"10.32513/tmj/19322008155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F3d is the finite field of order 3d with d be a positive integer, we consider A4:=F3d[e]=F3d[X]/(X4) is a finite quotient ring, where e4=0. In this paper, we will show an example of encryption and decryption. Firstly, we will present the elliptic curve over this ring. In addition, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. Precisely, we give a numerical example of cryptography (encryption and decryption) by using two methods with a secret key.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设F3d为3d阶有限域,d为正整数,我们考虑A4:=F3d[e]=F3d[X]/(X4)是一个有限商环,其中e4=0。在本文中,我们将展示一个加密和解密的示例。首先,我们将给出环上的椭圆曲线。此外,我们还研究了算法的性质,提出了表示元素和群律的有效实现。准确地说,我们给出了一个使用两种方法和一个密钥的密码学(加密和解密)的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECC over the ring F3d[ε],ε4=0 by using two methods
Let F3d is the finite field of order 3d with d be a positive integer, we consider A4:=F3d[e]=F3d[X]/(X4) is a finite quotient ring, where e4=0. In this paper, we will show an example of encryption and decryption. Firstly, we will present the elliptic curve over this ring. In addition, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. Precisely, we give a numerical example of cryptography (encryption and decryption) by using two methods with a secret key.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信