电报微分方程的q-相似解

IF 0.7 Q2 MATHEMATICS
D. Karahan
{"title":"电报微分方程的q-相似解","authors":"D. Karahan","doi":"10.31801/cfsuasmas.1009068","DOIUrl":null,"url":null,"abstract":"In this work, q-analogue of the telegraph differential equation is investigated. The approximation solution of q-analogue of the telegraph differential equation is founded by using the Laplace transform collocation method (LTCM). Then, the exact solution is compared with the approximation solution for q-analogue of the telegraph differential equation. The results showed that the method is useful and effective for q-analogue of the telegraph differential equation.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solutions of the q-analogue of the telegraph differential equation\",\"authors\":\"D. Karahan\",\"doi\":\"10.31801/cfsuasmas.1009068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, q-analogue of the telegraph differential equation is investigated. The approximation solution of q-analogue of the telegraph differential equation is founded by using the Laplace transform collocation method (LTCM). Then, the exact solution is compared with the approximation solution for q-analogue of the telegraph differential equation. The results showed that the method is useful and effective for q-analogue of the telegraph differential equation.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1009068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1009068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究电报微分方程的q-相似性。利用拉普拉斯变换配点法(LTCM)建立了电报微分方程q模拟的近似解。然后,将电报微分方程的精确解与近似解进行了比较。结果表明,该方法对电报微分方程的q模拟是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solutions of the q-analogue of the telegraph differential equation
In this work, q-analogue of the telegraph differential equation is investigated. The approximation solution of q-analogue of the telegraph differential equation is founded by using the Laplace transform collocation method (LTCM). Then, the exact solution is compared with the approximation solution for q-analogue of the telegraph differential equation. The results showed that the method is useful and effective for q-analogue of the telegraph differential equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信