集料分形特性对胶结砂砾力学行为影响的研究

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
L. Guo, S. Li, L. Zhong, L. Guo, L. Wang, F. Zhang, Y. Zhang, M. Wang
{"title":"集料分形特性对胶结砂砾力学行为影响的研究","authors":"L. Guo, S. Li, L. Zhong, L. Guo, L. Wang, F. Zhang, Y. Zhang, M. Wang","doi":"10.3989/MC.2021.13020","DOIUrl":null,"url":null,"abstract":"Owing to complex aspects of cemented sand and gravel (CSG), such as included unscreened aggregates, CSG properties differ from those of ordinary concrete. Fractal theory is introduced to study the effects of aggregate characteristics on CSG properties, quantifying aggregate gradation and shape. Numerical simulation and analyses show that: (1) improved aggregate gradation decreases the gradation fractal dimension and increases the CSG peak stress and elastic modulus; (2) more irregularly shaped aggregates increase the shape fractal dimension and decrease the CSG peak stress and elastic modulus; (3) the relationship quantified between aggregate characteristics and CSG mechanical properties provides a theoretical basis for aggregate allocation in engineering design and construction. Mixing artificial aggregates can improve aggregate gradation but reduces CSG performance. Appropriately blending artificial and on-site aggregates achieves optimal CSG performance; in this study, this is attained using 20% artificial aggregates added under standard gradation.","PeriodicalId":51113,"journal":{"name":"Materiales de Construccion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on the effects of the fractal characteristics of aggregates on the mechanical behavior of cemented sand and gravel\",\"authors\":\"L. Guo, S. Li, L. Zhong, L. Guo, L. Wang, F. Zhang, Y. Zhang, M. Wang\",\"doi\":\"10.3989/MC.2021.13020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to complex aspects of cemented sand and gravel (CSG), such as included unscreened aggregates, CSG properties differ from those of ordinary concrete. Fractal theory is introduced to study the effects of aggregate characteristics on CSG properties, quantifying aggregate gradation and shape. Numerical simulation and analyses show that: (1) improved aggregate gradation decreases the gradation fractal dimension and increases the CSG peak stress and elastic modulus; (2) more irregularly shaped aggregates increase the shape fractal dimension and decrease the CSG peak stress and elastic modulus; (3) the relationship quantified between aggregate characteristics and CSG mechanical properties provides a theoretical basis for aggregate allocation in engineering design and construction. Mixing artificial aggregates can improve aggregate gradation but reduces CSG performance. Appropriately blending artificial and on-site aggregates achieves optimal CSG performance; in this study, this is attained using 20% artificial aggregates added under standard gradation.\",\"PeriodicalId\":51113,\"journal\":{\"name\":\"Materiales de Construccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiales de Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3989/MC.2021.13020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiales de Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/MC.2021.13020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

由于胶结砂和砾石(CSG)的复杂性,如包含的未筛分骨料,CSG的性能与普通混凝土不同。引入分形理论研究了集料特性对CSG性能的影响,量化了集料的级配和形状。数值模拟和分析表明:(1)改进的集料级配降低了级配的分形维数,提高了CSG峰值应力和弹性模量;(2) 不规则形状的聚集体增加了形状的分形维数,降低了CSG峰值应力和弹性模量;(3) 骨料特性与CSG力学性能之间的定量关系为工程设计和施工中的骨料分配提供了理论依据。混合人工骨料可以改善骨料级配,但会降低CSG的性能。人工骨料和现场骨料的适当混合可实现最佳的CSG性能;在本研究中,这是通过在标准级配下添加20%的人工骨料来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the effects of the fractal characteristics of aggregates on the mechanical behavior of cemented sand and gravel
Owing to complex aspects of cemented sand and gravel (CSG), such as included unscreened aggregates, CSG properties differ from those of ordinary concrete. Fractal theory is introduced to study the effects of aggregate characteristics on CSG properties, quantifying aggregate gradation and shape. Numerical simulation and analyses show that: (1) improved aggregate gradation decreases the gradation fractal dimension and increases the CSG peak stress and elastic modulus; (2) more irregularly shaped aggregates increase the shape fractal dimension and decrease the CSG peak stress and elastic modulus; (3) the relationship quantified between aggregate characteristics and CSG mechanical properties provides a theoretical basis for aggregate allocation in engineering design and construction. Mixing artificial aggregates can improve aggregate gradation but reduces CSG performance. Appropriately blending artificial and on-site aggregates achieves optimal CSG performance; in this study, this is attained using 20% artificial aggregates added under standard gradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiales de Construccion
Materiales de Construccion 工程技术-材料科学:综合
CiteScore
3.20
自引率
9.50%
发文量
38
审稿时长
>12 weeks
期刊介绍: Materiales de Construcción is a quarterly, scientific Journal published in English, intended for researchers, plant technicians and other professionals engaged in the area of Construction, Materials Science and Technology. Scientific articles focus mainly on: - Physics and chemistry of the formation of cement and other binders. - Cement and concrete. Components (aggregate, admixtures, additions and similar). Behaviour and properties. - Durability and corrosion of other construction materials. - Restoration and conservation of the materials in heritage monuments. - Weathering and the deterioration of construction materials. - Use of industrial waste and by-products in construction. - Manufacture and properties of other construction materials, such as: gypsum/plaster, lime%2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信