智能触发与流量和压力触发性能在自动peep

Bradley Fujiuchi, Ehab Daoud
{"title":"智能触发与流量和压力触发性能在自动peep","authors":"Bradley Fujiuchi, Ehab Daoud","doi":"10.53097/jmv.10083","DOIUrl":null,"url":null,"abstract":"Background Intrinsic positive end-expiratory pressure (auto-PEEP) is a common problem in mechanically ventilated patients, which can lead to adverse effects on patients comfort, hemodynamics, lung mechanics and gas exchange. Triggering systems play a crucial role in the delivery of mechanical ventilation, and advancements in smart triggering technology aim to optimize patient-ventilator synchrony. This bench study aims to compare the performance of the novel SMART Trigger to traditional pressure and flow triggers in the context of auto-PEEP. Methods A lung model simulating severe obstructive pattern with high compliance (80 ml/cmH2O) and high resistance 30 cmH2O/L/s was connected to the Panther 5 ventilator (Origin Medical, California, USA). The mode was set at Volume Controlled with a tidal volume of 700 ml and mandatory breath per min (BPM) of 10/min and Inspiratory time of 2 seconds to intentionally create auto-PEEP. Simulated spontaneous breaths set at 20 BPM with increasing muscle pressure (Pmus) from -1 to maximum of -25 or till full trigger of all breaths. Three different triggering systems were evaluated: SMART Trigger (ST sensitivity 1 to 7), pressure trigger (-1 cmH2O), and flow trigger (1 l/min). The range of auto-PEEP levels induced increased incrementally with the increase in the respiratory rate ranging from 3 cmH2O for 10 BPM, 8 for 15 BPM, to 13 for 20 BPM. The following parameters were assessed for each triggering system: trigger sensitivity (defined as the number of breaths triggered above the mandatory breaths), and the trigger response time (time it takes from the beginning of muscle effort to the initiation of the breath. Results 100% of the breaths were triggered at Pmus (cmH2O) of -15 in the pressure trigger, -25 in flow trigger, -3 for ST1, -9 for ST2, -10 for ST3, -10 for ST4, -12 for ST5, -18 for ST 6, and -22 for ST 7. Trigger time (msec) for flow was 0.135 ± 0.02, for pressure 0.141 ± 0.04, for ST 1-4: 0.076 ± 0.03, for ST 5-7: 0.104 ± 0.04. Multivariate analysis of variance test showed significant difference between the time to trigger P <0.001. Conclusion This bench study highlights the potential advantages of SMART Trigger technology over conventional pressure and flow triggers during auto-PEEP. The SMART Trigger enhanced sensitivity and rapid response might contribute to improved patient-ventilator synchrony. Further research and clinical studies are warranted to validate these findings and explore the impact of smart trigger technology on patient outcomes in real-world scenarios. Keywords: SMART Trigger, Auto-PEEP, Trigger time","PeriodicalId":73813,"journal":{"name":"Journal of mechanical ventilation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMART Trigger versus Flow and Pressure trigger performance during auto-PEEP\",\"authors\":\"Bradley Fujiuchi, Ehab Daoud\",\"doi\":\"10.53097/jmv.10083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Intrinsic positive end-expiratory pressure (auto-PEEP) is a common problem in mechanically ventilated patients, which can lead to adverse effects on patients comfort, hemodynamics, lung mechanics and gas exchange. Triggering systems play a crucial role in the delivery of mechanical ventilation, and advancements in smart triggering technology aim to optimize patient-ventilator synchrony. This bench study aims to compare the performance of the novel SMART Trigger to traditional pressure and flow triggers in the context of auto-PEEP. Methods A lung model simulating severe obstructive pattern with high compliance (80 ml/cmH2O) and high resistance 30 cmH2O/L/s was connected to the Panther 5 ventilator (Origin Medical, California, USA). The mode was set at Volume Controlled with a tidal volume of 700 ml and mandatory breath per min (BPM) of 10/min and Inspiratory time of 2 seconds to intentionally create auto-PEEP. Simulated spontaneous breaths set at 20 BPM with increasing muscle pressure (Pmus) from -1 to maximum of -25 or till full trigger of all breaths. Three different triggering systems were evaluated: SMART Trigger (ST sensitivity 1 to 7), pressure trigger (-1 cmH2O), and flow trigger (1 l/min). The range of auto-PEEP levels induced increased incrementally with the increase in the respiratory rate ranging from 3 cmH2O for 10 BPM, 8 for 15 BPM, to 13 for 20 BPM. The following parameters were assessed for each triggering system: trigger sensitivity (defined as the number of breaths triggered above the mandatory breaths), and the trigger response time (time it takes from the beginning of muscle effort to the initiation of the breath. Results 100% of the breaths were triggered at Pmus (cmH2O) of -15 in the pressure trigger, -25 in flow trigger, -3 for ST1, -9 for ST2, -10 for ST3, -10 for ST4, -12 for ST5, -18 for ST 6, and -22 for ST 7. Trigger time (msec) for flow was 0.135 ± 0.02, for pressure 0.141 ± 0.04, for ST 1-4: 0.076 ± 0.03, for ST 5-7: 0.104 ± 0.04. Multivariate analysis of variance test showed significant difference between the time to trigger P <0.001. Conclusion This bench study highlights the potential advantages of SMART Trigger technology over conventional pressure and flow triggers during auto-PEEP. The SMART Trigger enhanced sensitivity and rapid response might contribute to improved patient-ventilator synchrony. Further research and clinical studies are warranted to validate these findings and explore the impact of smart trigger technology on patient outcomes in real-world scenarios. Keywords: SMART Trigger, Auto-PEEP, Trigger time\",\"PeriodicalId\":73813,\"journal\":{\"name\":\"Journal of mechanical ventilation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of mechanical ventilation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53097/jmv.10083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mechanical ventilation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53097/jmv.10083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本征呼气末正压(auto-PEEP)是机械通气患者的常见问题,可对患者的舒适度、血流动力学、肺力学和气体交换产生不良影响。触发系统在机械通气中起着至关重要的作用,智能触发技术的进步旨在优化患者与呼吸机的同步。本实验旨在比较新型SMART触发器与传统压力和流量触发器在自动peep环境下的性能。方法将高顺应性(80 ml/cmH2O)、高阻力(30 cmH2O/L/s)模拟严重阻塞性肺模型与Panther 5呼吸机(美国加州Origin Medical)连接。模式设置为音量控制,潮汐量为700毫升,每分钟强制呼吸(BPM)为10次/分钟,吸气时间为2秒,有意创建自动peep。模拟自发呼吸,设定为每分钟20次,肌肉压力(Pmus)从-1增加到最大-25,或直到所有呼吸完全触发。评估了三种不同的触发系统:SMART触发器(ST灵敏度1至7),压力触发器(-1 cmH2O)和流量触发器(1 l/min)。随着呼吸频率的增加,诱导的自动peep水平范围逐渐增加,从3 cmH2O为10 BPM, 8 cmH2O为15 BPM, 13 cmH2O为20 BPM。评估每个触发系统的以下参数:触发灵敏度(定义为触发高于强制呼吸的呼吸次数)和触发反应时间(从肌肉开始努力到开始呼吸所需的时间)。结果100%的呼吸在压力触发的Pmus (cmH2O)为-15,流量触发的Pmus为-25,ST1为-3,ST2为-9,ST3为-10,ST4为-10,ST5为-12,st6为-18,st7为-22时触发。流量触发时间(msec)为0.135±0.02,压力触发时间为0.141±0.04,ST 1-4触发时间为0.076±0.03,ST 5-7触发时间为0.104±0.04。多因素方差分析检验显示触发时间P <0.001有显著性差异。本实验强调了SMART触发器技术在自动peep过程中相对于传统压力和流量触发器的潜在优势。SMART Trigger增强的灵敏度和快速反应可能有助于改善患者与呼吸机的同步。需要进一步的研究和临床研究来验证这些发现,并探索智能触发技术在现实世界中对患者预后的影响。关键词:智能触发,自动窥视,触发时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMART Trigger versus Flow and Pressure trigger performance during auto-PEEP
Background Intrinsic positive end-expiratory pressure (auto-PEEP) is a common problem in mechanically ventilated patients, which can lead to adverse effects on patients comfort, hemodynamics, lung mechanics and gas exchange. Triggering systems play a crucial role in the delivery of mechanical ventilation, and advancements in smart triggering technology aim to optimize patient-ventilator synchrony. This bench study aims to compare the performance of the novel SMART Trigger to traditional pressure and flow triggers in the context of auto-PEEP. Methods A lung model simulating severe obstructive pattern with high compliance (80 ml/cmH2O) and high resistance 30 cmH2O/L/s was connected to the Panther 5 ventilator (Origin Medical, California, USA). The mode was set at Volume Controlled with a tidal volume of 700 ml and mandatory breath per min (BPM) of 10/min and Inspiratory time of 2 seconds to intentionally create auto-PEEP. Simulated spontaneous breaths set at 20 BPM with increasing muscle pressure (Pmus) from -1 to maximum of -25 or till full trigger of all breaths. Three different triggering systems were evaluated: SMART Trigger (ST sensitivity 1 to 7), pressure trigger (-1 cmH2O), and flow trigger (1 l/min). The range of auto-PEEP levels induced increased incrementally with the increase in the respiratory rate ranging from 3 cmH2O for 10 BPM, 8 for 15 BPM, to 13 for 20 BPM. The following parameters were assessed for each triggering system: trigger sensitivity (defined as the number of breaths triggered above the mandatory breaths), and the trigger response time (time it takes from the beginning of muscle effort to the initiation of the breath. Results 100% of the breaths were triggered at Pmus (cmH2O) of -15 in the pressure trigger, -25 in flow trigger, -3 for ST1, -9 for ST2, -10 for ST3, -10 for ST4, -12 for ST5, -18 for ST 6, and -22 for ST 7. Trigger time (msec) for flow was 0.135 ± 0.02, for pressure 0.141 ± 0.04, for ST 1-4: 0.076 ± 0.03, for ST 5-7: 0.104 ± 0.04. Multivariate analysis of variance test showed significant difference between the time to trigger P <0.001. Conclusion This bench study highlights the potential advantages of SMART Trigger technology over conventional pressure and flow triggers during auto-PEEP. The SMART Trigger enhanced sensitivity and rapid response might contribute to improved patient-ventilator synchrony. Further research and clinical studies are warranted to validate these findings and explore the impact of smart trigger technology on patient outcomes in real-world scenarios. Keywords: SMART Trigger, Auto-PEEP, Trigger time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信