Vince William Carandang, Aaron Jules R. Del Rosario, Julius Ezra M. Gundran, A. Chua
{"title":"一种新型高效多联产装置自动化系统的设计","authors":"Vince William Carandang, Aaron Jules R. Del Rosario, Julius Ezra M. Gundran, A. Chua","doi":"10.5875/AUSMT.V9I2.1895","DOIUrl":null,"url":null,"abstract":"Polygeneration plants are a leading means of increasing the efficiency and reducing the environmental impact of energy conversion. This study addresses the lack of studies on automation and control of systems that produce electricity, heating, cooling, and potable water. Mixed integer linear programming (MILP) optimization of the annualized total cost is used to select and size the plant components. The final layout consists of solar photovoltaic (PV) and thermal, an absorption chiller and a multi-effect desalination for electricity, heating, cooling and water, respectively. As auxiliary sources, boiler, gas turbine and grid connection are present. Storage units for electricity, heating, and water are also included in the proposed layout. The control and automation system are implemented using ladder logic. Sufficient supply, efficient resource use, and financial gain are considered in the control scheme design. Applying the methodology to a mixed industrial, commercial and residential zone in Southern Luzon, Philippines, the simulation results show successful implementation of all control scenarios. Economic analysis on the hourly cash flows of the system on a typical day show significant daily savings that outweigh the investment cost of the proposed control and automation system with monthly savings of ₱25,112.40 and payback period of 0.4 years.","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":"9 1","pages":"77-89"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Design of an Automation System for an Energy-Efficient Polygeneration Plant\",\"authors\":\"Vince William Carandang, Aaron Jules R. Del Rosario, Julius Ezra M. Gundran, A. Chua\",\"doi\":\"10.5875/AUSMT.V9I2.1895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polygeneration plants are a leading means of increasing the efficiency and reducing the environmental impact of energy conversion. This study addresses the lack of studies on automation and control of systems that produce electricity, heating, cooling, and potable water. Mixed integer linear programming (MILP) optimization of the annualized total cost is used to select and size the plant components. The final layout consists of solar photovoltaic (PV) and thermal, an absorption chiller and a multi-effect desalination for electricity, heating, cooling and water, respectively. As auxiliary sources, boiler, gas turbine and grid connection are present. Storage units for electricity, heating, and water are also included in the proposed layout. The control and automation system are implemented using ladder logic. Sufficient supply, efficient resource use, and financial gain are considered in the control scheme design. Applying the methodology to a mixed industrial, commercial and residential zone in Southern Luzon, Philippines, the simulation results show successful implementation of all control scenarios. Economic analysis on the hourly cash flows of the system on a typical day show significant daily savings that outweigh the investment cost of the proposed control and automation system with monthly savings of ₱25,112.40 and payback period of 0.4 years.\",\"PeriodicalId\":38109,\"journal\":{\"name\":\"International Journal of Automation and Smart Technology\",\"volume\":\"9 1\",\"pages\":\"77-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Smart Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5875/AUSMT.V9I2.1895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/AUSMT.V9I2.1895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
A Novel Design of an Automation System for an Energy-Efficient Polygeneration Plant
Polygeneration plants are a leading means of increasing the efficiency and reducing the environmental impact of energy conversion. This study addresses the lack of studies on automation and control of systems that produce electricity, heating, cooling, and potable water. Mixed integer linear programming (MILP) optimization of the annualized total cost is used to select and size the plant components. The final layout consists of solar photovoltaic (PV) and thermal, an absorption chiller and a multi-effect desalination for electricity, heating, cooling and water, respectively. As auxiliary sources, boiler, gas turbine and grid connection are present. Storage units for electricity, heating, and water are also included in the proposed layout. The control and automation system are implemented using ladder logic. Sufficient supply, efficient resource use, and financial gain are considered in the control scheme design. Applying the methodology to a mixed industrial, commercial and residential zone in Southern Luzon, Philippines, the simulation results show successful implementation of all control scenarios. Economic analysis on the hourly cash flows of the system on a typical day show significant daily savings that outweigh the investment cost of the proposed control and automation system with monthly savings of ₱25,112.40 and payback period of 0.4 years.
期刊介绍:
International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.