局部分形傅立叶变换及其应用

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Golmankhaneh, K. Ali, R. Yilmazer, Mohammed K. A. Kaabar
{"title":"局部分形傅立叶变换及其应用","authors":"A. Golmankhaneh, K. Ali, R. Yilmazer, Mohammed K. A. Kaabar","doi":"10.22034/CMDE.2021.42554.1832","DOIUrl":null,"url":null,"abstract":"In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta are also defined. In addition, some important applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha parameter, which is the dimension of the fractal set, such that when $alpha=1$, we obtain the same results in the standard calculus.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Local Fractal Fourier Transform and Applications\",\"authors\":\"A. Golmankhaneh, K. Ali, R. Yilmazer, Mohammed K. A. Kaabar\",\"doi\":\"10.22034/CMDE.2021.42554.1832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta are also defined. In addition, some important applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha parameter, which is the dimension of the fractal set, such that when $alpha=1$, we obtain the same results in the standard calculus.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.42554.1832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.42554.1832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 11

摘要

在这篇文章中,我们回顾了分形演算,并提出了局部傅立叶变换及其相关性质的类似物,以及分形演算中的傅立叶卷积定理和证明。还定义了分形Dirac delta及其导数和Dirac del塔的分形傅立叶变换。此外,本文还介绍了局部分形傅立叶变换的一些重要应用,如简单电路中的分形电流、分形二阶常微分方程和分形伯努利-欧拉梁方程。所有讨论的应用都与以下事实密切相关:在分形学中,有用的局部分形导数是标准微积分意义上的广义局部导数。此外,在额外的阿尔法参数的基础上,也进行了比较分析来解释这个分形演算参数的好处,阿尔法参数是分形集的维数,这样当$alpha=1$时,我们在标准演算中获得了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Fractal Fourier Transform and Applications
In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta are also defined. In addition, some important applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha parameter, which is the dimension of the fractal set, such that when $alpha=1$, we obtain the same results in the standard calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信