高速节能进位预判加法器

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
P. Balasubramanian, N. Mastorakis
{"title":"高速节能进位预判加法器","authors":"P. Balasubramanian, N. Mastorakis","doi":"10.3390/jlpea12030046","DOIUrl":null,"url":null,"abstract":"The carry look-ahead adder (CLA) is well known among the family of high-speed adders. However, a conventional CLA is not faster than other high-speed adders such as a conditional sum adder (CSA), a carry-select adder (CSLA), and the Kogge–Stone adder (KSA), which is the fastest parallel-prefix adder. Further, in terms of power-delay product (PDP) that characterizes the energy of digital circuits, the conventional CLA is not efficient compared to CSLA and KSA. In this context, this paper presents a high-speed and energy-efficient architecture for the CLA. Many adders ranging from ripple carry to parallel-prefix adders were implemented using a 32-28 nm CMOS standard digital cell library by considering a 32-bit addition. The adders were structurally described in Verilog and synthesized using Synopsys Design Compiler. From the results obtained, it is observed that the proposed CLA achieves a reduction in critical path delay by 55.3% and a reduction in PDP by 45% compared to the conventional CLA. Compared to the CSA, the proposed CLA achieves a reduction in critical path delay by 33.9%, a reduction in power by 26.1%, and a reduction in PDP by 51.1%. Compared to an optimized CSLA, the proposed CLA achieves a reduction in power by 35.4%, a reduction in area by 37.3%, and a reduction in PDP by 37.1% without sacrificing the speed. Although the KSA is faster, the proposed CLA achieves a reduction in power by 39.6%, a reduction in PDP by 6.5%, and a reduction in area by 55.6% in comparison.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High-Speed and Energy-Efficient Carry Look-Ahead Adder\",\"authors\":\"P. Balasubramanian, N. Mastorakis\",\"doi\":\"10.3390/jlpea12030046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The carry look-ahead adder (CLA) is well known among the family of high-speed adders. However, a conventional CLA is not faster than other high-speed adders such as a conditional sum adder (CSA), a carry-select adder (CSLA), and the Kogge–Stone adder (KSA), which is the fastest parallel-prefix adder. Further, in terms of power-delay product (PDP) that characterizes the energy of digital circuits, the conventional CLA is not efficient compared to CSLA and KSA. In this context, this paper presents a high-speed and energy-efficient architecture for the CLA. Many adders ranging from ripple carry to parallel-prefix adders were implemented using a 32-28 nm CMOS standard digital cell library by considering a 32-bit addition. The adders were structurally described in Verilog and synthesized using Synopsys Design Compiler. From the results obtained, it is observed that the proposed CLA achieves a reduction in critical path delay by 55.3% and a reduction in PDP by 45% compared to the conventional CLA. Compared to the CSA, the proposed CLA achieves a reduction in critical path delay by 33.9%, a reduction in power by 26.1%, and a reduction in PDP by 51.1%. Compared to an optimized CSLA, the proposed CLA achieves a reduction in power by 35.4%, a reduction in area by 37.3%, and a reduction in PDP by 37.1% without sacrificing the speed. Although the KSA is faster, the proposed CLA achieves a reduction in power by 39.6%, a reduction in PDP by 6.5%, and a reduction in area by 55.6% in comparison.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12030046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12030046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 10

摘要

进位超前加法器(CLA)在高速加法器家族中是众所周知的。然而,传统的CLA并不比其他高速加法器快,如条件和加法器(CSA)、进位选择加法器(CSLA)和Kogge–Stone加法器(KSA),后者是最快的并行前缀加法器。此外,就表征数字电路能量的功率延迟乘积(PDP)而言,与CSLA和KSA相比,传统的CLA是无效的。在这种背景下,本文提出了一种用于CLA的高速节能架构。通过考虑32位加法,使用32-28nm CMOS标准数字单元库实现了从纹波进位到并行前缀加法器的许多加法器。加法器在Verilog中进行了结构描述,并使用Synopsys设计编译器进行了合成。从所获得的结果中可以观察到,与传统的CLA相比,所提出的CLA实现了临界路径延迟减少55.3%和PDP减少45%。与CSA相比,所提出的CLA实现了关键路径延迟减少33.9%、功率减少26.1%和PDP减少51.1%。与优化的CSLA相比,所建议的CLA在不牺牲速度的情况下实现了功率减少35.4%、面积减少37.3%和PDP减少37.1%。尽管KSA更快,但相比之下,所提出的CLA实现了39.6%的功率减少、6.5%的PDP减少和55.6%的面积减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Speed and Energy-Efficient Carry Look-Ahead Adder
The carry look-ahead adder (CLA) is well known among the family of high-speed adders. However, a conventional CLA is not faster than other high-speed adders such as a conditional sum adder (CSA), a carry-select adder (CSLA), and the Kogge–Stone adder (KSA), which is the fastest parallel-prefix adder. Further, in terms of power-delay product (PDP) that characterizes the energy of digital circuits, the conventional CLA is not efficient compared to CSLA and KSA. In this context, this paper presents a high-speed and energy-efficient architecture for the CLA. Many adders ranging from ripple carry to parallel-prefix adders were implemented using a 32-28 nm CMOS standard digital cell library by considering a 32-bit addition. The adders were structurally described in Verilog and synthesized using Synopsys Design Compiler. From the results obtained, it is observed that the proposed CLA achieves a reduction in critical path delay by 55.3% and a reduction in PDP by 45% compared to the conventional CLA. Compared to the CSA, the proposed CLA achieves a reduction in critical path delay by 33.9%, a reduction in power by 26.1%, and a reduction in PDP by 51.1%. Compared to an optimized CSLA, the proposed CLA achieves a reduction in power by 35.4%, a reduction in area by 37.3%, and a reduction in PDP by 37.1% without sacrificing the speed. Although the KSA is faster, the proposed CLA achieves a reduction in power by 39.6%, a reduction in PDP by 6.5%, and a reduction in area by 55.6% in comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信