{"title":"从腐烂大蒜样品中分离的一种真菌产菊粉酶的优化","authors":"A. Surti, S. Mhatre","doi":"10.30491/JABR.2020.238953.1253","DOIUrl":null,"url":null,"abstract":"Introduction: Inulinases are β-fructohydrolase enzymes that catalyze the hydrolysis of inulin. Recently, this enzyme has gained much importance mainly due to its ability to produce high-density fructose syrup using inulin as a raw material. In the current study, screening of inulinase-producing microorganisms was carried out from the rhizosphere soil of the Dahlia plant and rotten garlic samples. Materials and Methods: The inulinase activity was detected with the help of 3,5-dinitrosalicylic acid (DNSA) and Seliwanoff’s method, and the organism showing the highest potential was selected for further optimization studies. Results: The optimum culture conditions for inulinase production, by the test fungal culture, were observed when 5% inoculum was added to the minimal medium (pH 5.5) containing 1% inulin/ costus root powder as a carbon source and 0.15% NaNO3/ NH4Cl as a nitrogen source, and incubated at 30°C for 48h under shaker conditions (200 rpm). Maximum enzyme activity was observed at pH level of 5 and temperature level of 45°C, with thermal stability noted between 35°C-55°C. The I/S value of the crude enzyme was calculated to be 0.45 indicating true inulinase activity. It showed no significant inhibition in the presence of metal ions such as Zn+2, Mg+2, and Fe+3. The Ca+2 ions showed partial inhibition whereas Cu+2 ions showed an enhancement in the enzyme activity. Conclusions: These factors may present the test fungal culture isolated in the present study to be a potential candidate for the production of thermo-tolerant and metal resistant inulinase enzyme in order to be used for various biotechnological processes.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":"8 1","pages":"164-171"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of Inulinase Production by a Fungal Species Isolated From Rotten Garlic Samples\",\"authors\":\"A. Surti, S. Mhatre\",\"doi\":\"10.30491/JABR.2020.238953.1253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Inulinases are β-fructohydrolase enzymes that catalyze the hydrolysis of inulin. Recently, this enzyme has gained much importance mainly due to its ability to produce high-density fructose syrup using inulin as a raw material. In the current study, screening of inulinase-producing microorganisms was carried out from the rhizosphere soil of the Dahlia plant and rotten garlic samples. Materials and Methods: The inulinase activity was detected with the help of 3,5-dinitrosalicylic acid (DNSA) and Seliwanoff’s method, and the organism showing the highest potential was selected for further optimization studies. Results: The optimum culture conditions for inulinase production, by the test fungal culture, were observed when 5% inoculum was added to the minimal medium (pH 5.5) containing 1% inulin/ costus root powder as a carbon source and 0.15% NaNO3/ NH4Cl as a nitrogen source, and incubated at 30°C for 48h under shaker conditions (200 rpm). Maximum enzyme activity was observed at pH level of 5 and temperature level of 45°C, with thermal stability noted between 35°C-55°C. The I/S value of the crude enzyme was calculated to be 0.45 indicating true inulinase activity. It showed no significant inhibition in the presence of metal ions such as Zn+2, Mg+2, and Fe+3. The Ca+2 ions showed partial inhibition whereas Cu+2 ions showed an enhancement in the enzyme activity. Conclusions: These factors may present the test fungal culture isolated in the present study to be a potential candidate for the production of thermo-tolerant and metal resistant inulinase enzyme in order to be used for various biotechnological processes.\",\"PeriodicalId\":14945,\"journal\":{\"name\":\"Journal of Applied Biotechnology Reports\",\"volume\":\"8 1\",\"pages\":\"164-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30491/JABR.2020.238953.1253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.238953.1253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Optimization of Inulinase Production by a Fungal Species Isolated From Rotten Garlic Samples
Introduction: Inulinases are β-fructohydrolase enzymes that catalyze the hydrolysis of inulin. Recently, this enzyme has gained much importance mainly due to its ability to produce high-density fructose syrup using inulin as a raw material. In the current study, screening of inulinase-producing microorganisms was carried out from the rhizosphere soil of the Dahlia plant and rotten garlic samples. Materials and Methods: The inulinase activity was detected with the help of 3,5-dinitrosalicylic acid (DNSA) and Seliwanoff’s method, and the organism showing the highest potential was selected for further optimization studies. Results: The optimum culture conditions for inulinase production, by the test fungal culture, were observed when 5% inoculum was added to the minimal medium (pH 5.5) containing 1% inulin/ costus root powder as a carbon source and 0.15% NaNO3/ NH4Cl as a nitrogen source, and incubated at 30°C for 48h under shaker conditions (200 rpm). Maximum enzyme activity was observed at pH level of 5 and temperature level of 45°C, with thermal stability noted between 35°C-55°C. The I/S value of the crude enzyme was calculated to be 0.45 indicating true inulinase activity. It showed no significant inhibition in the presence of metal ions such as Zn+2, Mg+2, and Fe+3. The Ca+2 ions showed partial inhibition whereas Cu+2 ions showed an enhancement in the enzyme activity. Conclusions: These factors may present the test fungal culture isolated in the present study to be a potential candidate for the production of thermo-tolerant and metal resistant inulinase enzyme in order to be used for various biotechnological processes.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis