成熟鳄梨的施肥和精确灌溉调度

Q4 Agricultural and Biological Sciences
R. Tirado-Corbalá, E. Román-Paoli, Jonathan Muñoz-Barreto
{"title":"成熟鳄梨的施肥和精确灌溉调度","authors":"R. Tirado-Corbalá, E. Román-Paoli, Jonathan Muñoz-Barreto","doi":"10.46429/jaupr.v105i1.19637","DOIUrl":null,"url":null,"abstract":"Irrigation scheduling (IS) and fertilization are among the most important practices in the production of horticultural crops because they affect fruit quality and quantity directly. Thus, a 15-year-old avocado orchard (cv. ‘Simmonds’) was used to determine precise IS, based on monitoring soil moisture content (SMC), remote sensing technologies [Unmanned Aerial Vehicle (UAV)] under two fertilization levels using granular formulation 15-3-19. In October 2015, all trees were pruned (topped and hedged) to 3.05 m height and 2.44 m diameter. In December 2015, soil moisture (SM) sensors were installed at five (10, 30, 50, 70 and 90 cm) soil depths in six locations. Trees received two fertilizer treatments: F1-9.06 kg and F2-12.07 kg of 15-3-19/tree/year every three months. Precipitation and SM data were recorded daily for 21 months; SM data was corrected with a quadratic equation (y = -4.1881x2 + 3.6886x - 0.3083) generated specifically for the Coto soil series (Typic Hapludox). The SM values recorded were always greater than 41%, indicating that the avocado orchard was growing under water saturation conditions; thus, micro-irrigation was not needed. The UAV data at 5, 13 and 20 months after pruning (MAP) showed quick closure of the avocado canopy; acquiring a denser and more cylindrical shape (from 17.6 ± 2.65 m2 to 52.7 ± 6.10 m2), regardless of fertilizer level. Based on correlation of UAV and manual results, F2-treated trees indicated stronger correlation at 13 and 20 MAP (R2 >0.75) than F1-trees. Yield production (110 avocados per tree = 13,200 per hectare) and leaf nutrient content did not differ significantly with fertilizer level. For commercial avocado farmers the use of SMC sensors and UAV technology could be an advantage, albeit an expensive one. Soil moisture content sensors have been shown to be very effective in irrigation water conservation. In terms of fertilization, the results suggest not using more than 9.06 kg of 15-3-19/tree/year as this amount seems enough to satisfy avocado requirements, under the experiment’s conditions. Future evaluations will determine if it is possible to use less fertilizer and still maintain an optimal avocado production.","PeriodicalId":14937,"journal":{"name":"Journal of Agriculture of The University of Puerto Rico","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fertilization and precise irrigation scheduling for mature avocado\",\"authors\":\"R. Tirado-Corbalá, E. Román-Paoli, Jonathan Muñoz-Barreto\",\"doi\":\"10.46429/jaupr.v105i1.19637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irrigation scheduling (IS) and fertilization are among the most important practices in the production of horticultural crops because they affect fruit quality and quantity directly. Thus, a 15-year-old avocado orchard (cv. ‘Simmonds’) was used to determine precise IS, based on monitoring soil moisture content (SMC), remote sensing technologies [Unmanned Aerial Vehicle (UAV)] under two fertilization levels using granular formulation 15-3-19. In October 2015, all trees were pruned (topped and hedged) to 3.05 m height and 2.44 m diameter. In December 2015, soil moisture (SM) sensors were installed at five (10, 30, 50, 70 and 90 cm) soil depths in six locations. Trees received two fertilizer treatments: F1-9.06 kg and F2-12.07 kg of 15-3-19/tree/year every three months. Precipitation and SM data were recorded daily for 21 months; SM data was corrected with a quadratic equation (y = -4.1881x2 + 3.6886x - 0.3083) generated specifically for the Coto soil series (Typic Hapludox). The SM values recorded were always greater than 41%, indicating that the avocado orchard was growing under water saturation conditions; thus, micro-irrigation was not needed. The UAV data at 5, 13 and 20 months after pruning (MAP) showed quick closure of the avocado canopy; acquiring a denser and more cylindrical shape (from 17.6 ± 2.65 m2 to 52.7 ± 6.10 m2), regardless of fertilizer level. Based on correlation of UAV and manual results, F2-treated trees indicated stronger correlation at 13 and 20 MAP (R2 >0.75) than F1-trees. Yield production (110 avocados per tree = 13,200 per hectare) and leaf nutrient content did not differ significantly with fertilizer level. For commercial avocado farmers the use of SMC sensors and UAV technology could be an advantage, albeit an expensive one. Soil moisture content sensors have been shown to be very effective in irrigation water conservation. In terms of fertilization, the results suggest not using more than 9.06 kg of 15-3-19/tree/year as this amount seems enough to satisfy avocado requirements, under the experiment’s conditions. Future evaluations will determine if it is possible to use less fertilizer and still maintain an optimal avocado production.\",\"PeriodicalId\":14937,\"journal\":{\"name\":\"Journal of Agriculture of The University of Puerto Rico\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture of The University of Puerto Rico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46429/jaupr.v105i1.19637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture of The University of Puerto Rico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46429/jaupr.v105i1.19637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

灌溉调度和施肥是园艺作物生产中最重要的实践之一,因为它们直接影响果实的质量和数量。因此,在使用颗粒配方15-3-19的两个施肥水平下,基于监测土壤含水量(SMC)、遥感技术[无人机(UAV)],使用一个15年树龄的鳄梨园(cv.“Simmonds”)来确定精确的IS。2015年10月,所有树木被修剪(顶部和树篱)至3.05米高和2.44米直径。2015年12月,在六个地点的五个(10、30、50、70和90厘米)土壤深度安装了土壤湿度(SM)传感器。树木接受两种肥料处理:F1-9.06kg和F2-12.07kg,每三个月15-3-19/棵/年。21个月来每天记录降水量和SM数据;SM数据用专门为Coto土壤系列(Typic Hapludox)生成的二次方程(y=-4.1881x2+3.6886x-0.3083)进行校正。记录的SM值始终大于41%,表明鳄梨园在水饱和条件下生长;因此,不需要微灌。修剪后5、13和20个月的无人机数据(MAP)显示鳄梨冠层迅速闭合;无论肥料水平如何,都会获得更致密、更圆柱形的形状(从17.6±2.65 m2到52.7±6.10 m2)。根据无人机和人工结果的相关性,F2处理的树木在13和20 MAP时表现出比F1树木更强的相关性(R2>0.75)。产量(每棵树110个鳄梨=每公顷13200个)和叶片营养成分与肥料水平没有显著差异。对于商业鳄梨种植者来说,使用SMC传感器和无人机技术可能是一个优势,尽管成本高昂。土壤含水量传感器已被证明在灌溉水源保护方面非常有效。在施肥方面,研究结果表明,在实验条件下,每年使用不超过9.06公斤15-3-19棵树,因为这个数量似乎足以满足鳄梨的需求。未来的评估将确定是否有可能减少化肥的使用,并保持鳄梨的最佳产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fertilization and precise irrigation scheduling for mature avocado
Irrigation scheduling (IS) and fertilization are among the most important practices in the production of horticultural crops because they affect fruit quality and quantity directly. Thus, a 15-year-old avocado orchard (cv. ‘Simmonds’) was used to determine precise IS, based on monitoring soil moisture content (SMC), remote sensing technologies [Unmanned Aerial Vehicle (UAV)] under two fertilization levels using granular formulation 15-3-19. In October 2015, all trees were pruned (topped and hedged) to 3.05 m height and 2.44 m diameter. In December 2015, soil moisture (SM) sensors were installed at five (10, 30, 50, 70 and 90 cm) soil depths in six locations. Trees received two fertilizer treatments: F1-9.06 kg and F2-12.07 kg of 15-3-19/tree/year every three months. Precipitation and SM data were recorded daily for 21 months; SM data was corrected with a quadratic equation (y = -4.1881x2 + 3.6886x - 0.3083) generated specifically for the Coto soil series (Typic Hapludox). The SM values recorded were always greater than 41%, indicating that the avocado orchard was growing under water saturation conditions; thus, micro-irrigation was not needed. The UAV data at 5, 13 and 20 months after pruning (MAP) showed quick closure of the avocado canopy; acquiring a denser and more cylindrical shape (from 17.6 ± 2.65 m2 to 52.7 ± 6.10 m2), regardless of fertilizer level. Based on correlation of UAV and manual results, F2-treated trees indicated stronger correlation at 13 and 20 MAP (R2 >0.75) than F1-trees. Yield production (110 avocados per tree = 13,200 per hectare) and leaf nutrient content did not differ significantly with fertilizer level. For commercial avocado farmers the use of SMC sensors and UAV technology could be an advantage, albeit an expensive one. Soil moisture content sensors have been shown to be very effective in irrigation water conservation. In terms of fertilization, the results suggest not using more than 9.06 kg of 15-3-19/tree/year as this amount seems enough to satisfy avocado requirements, under the experiment’s conditions. Future evaluations will determine if it is possible to use less fertilizer and still maintain an optimal avocado production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
64
审稿时长
6 months
期刊介绍: The Journal of Agriculture of the University of Puerto Rico issued biannually by the Agricultural Experiment Station of the University of Puerto Rico, Mayagüez Campus, for the publication of articles and research notes by staff members or others, dealing with scientific agriculture in Puerto Rico and elsewhere in the Caribbean and Latin America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信