二项式系数的一个上界,其形式为德莫弗-拉普拉斯

Q4 Mathematics
S. Agievich
{"title":"二项式系数的一个上界,其形式为德莫弗-拉普拉斯","authors":"S. Agievich","doi":"10.33581/2520-6508-2022-1-66-74","DOIUrl":null,"url":null,"abstract":"We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper bound on binomial coefficients in the de Moivre – Laplace form\",\"authors\":\"S. Agievich\",\"doi\":\"10.33581/2520-6508-2022-1-66-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.\",\"PeriodicalId\":36323,\"journal\":{\"name\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-6508-2022-1-66-74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2022-1-66-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个二项式系数的上界,它适用于整个参数范围,其形式重复对称二项式分布的de Moivre - Laplace近似的形式。利用该界,我们估计了给定布尔函数对弯曲函数的延拓个数,研究了Walsh - Hadamard谱的依赖关系,得到了以大小为界的整数平方和表示的个数的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upper bound on binomial coefficients in the de Moivre – Laplace form
We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信