{"title":"用Green-Naghdi方程求解非线性波的衍射和折射","authors":"M. Hayatdavoodi, Cengiz Ertekin, R. Cengiz","doi":"10.1115/1.4055484","DOIUrl":null,"url":null,"abstract":"\n Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by use of the Green-Naghdi (GN) equations in two and three dimensions. A numerical wave tank consisting of deep, transitional and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of ramps with nonuniform profiles and large slopes are used to connect the deep-water side of the tank to the shallow-water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of the domain to minimize the wave reflection back into the domain. The system of equations are solved numerically in time domain by use of a second-order finite difference approach for spatial discretization, and in a boundary-fitted coordinate system, and by use of the Modified Euler method for time marching. Results include solitary and cnoidal wave surface elevation and particle velocities and are compared with the existing solutions where possible. Overall very good agreement is observed. Discussion is provided on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of the ramps, as well as on the performance of the GN equations in solving these problems.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Diffraction and refraction of nonlinear waves by the Green-Naghdi equations\",\"authors\":\"M. Hayatdavoodi, Cengiz Ertekin, R. Cengiz\",\"doi\":\"10.1115/1.4055484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by use of the Green-Naghdi (GN) equations in two and three dimensions. A numerical wave tank consisting of deep, transitional and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of ramps with nonuniform profiles and large slopes are used to connect the deep-water side of the tank to the shallow-water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of the domain to minimize the wave reflection back into the domain. The system of equations are solved numerically in time domain by use of a second-order finite difference approach for spatial discretization, and in a boundary-fitted coordinate system, and by use of the Modified Euler method for time marching. Results include solitary and cnoidal wave surface elevation and particle velocities and are compared with the existing solutions where possible. Overall very good agreement is observed. Discussion is provided on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of the ramps, as well as on the performance of the GN equations in solving these problems.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055484\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055484","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Diffraction and refraction of nonlinear waves by the Green-Naghdi equations
Diffraction and refraction of nonlinear shallow water waves due to uneven bathymetry are studied by use of the Green-Naghdi (GN) equations in two and three dimensions. A numerical wave tank consisting of deep, transitional and shallow regions is created. Various forms of three-dimensional bathymetry, consisting of ramps with nonuniform profiles and large slopes are used to connect the deep-water side of the tank to the shallow-water shelf. A wavemaker is placed at the upwave side of the domain, capable of generating solitary and cnoidal waves of the GN equations. A numerical wave absorber is located downwave of the domain to minimize the wave reflection back into the domain. The system of equations are solved numerically in time domain by use of a second-order finite difference approach for spatial discretization, and in a boundary-fitted coordinate system, and by use of the Modified Euler method for time marching. Results include solitary and cnoidal wave surface elevation and particle velocities and are compared with the existing solutions where possible. Overall very good agreement is observed. Discussion is provided on the nonlinearity and dispersion effects on the wave diffraction and refraction by the various forms of the ramps, as well as on the performance of the GN equations in solving these problems.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.