Didi Harlianto, Andris Rachardi, Deandra Aulia Rusdah, E. Safitri, Ely Sudarsono, Alhadi Bustamam
{"title":"神经分析网络的实施以预测股票价格","authors":"Didi Harlianto, Andris Rachardi, Deandra Aulia Rusdah, E. Safitri, Ely Sudarsono, Alhadi Bustamam","doi":"10.14710/JTSISKOM.2021.13898","DOIUrl":null,"url":null,"abstract":"Saham adalah instrumen investasi dengan harga yang sangat fluktuatif. Harga saham dalam kurun waktu tertentu membentuk suatu data runtun waktu. Saat ini, salah satu metode yang cukup populer untuk menangani data runtun adalah Recurrent Neural Network (RNN). Tulisan ini membahas penerapan RNN di masa yang akan datang dalam memprediksi harga saham berdasarkan data harga saham beberapa tahun ke belakang. Tetapi RNN standar memiliki kelemahan yaitu terjadinya kondisi vanishing gradient. Oleh karena itu, arsitektur Long Short Term Memory (LSTM) digunakan pada RNN untuk mengatasi masalah tersebut. Sebagai pembanding, ditampilkan pula hasil prediksi dengan menggunakan model RNN standar. Hasilnya, RNN dengan arsitektur LSTM dapat dengan baik memprediksi harga saham dibandingkan RNN standar yang direfleksikan oleh nilai Mean Absolute Error (MAE) antar kedua model.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Reccurent Neural Network Untuk Memprediksi Harga Saham\",\"authors\":\"Didi Harlianto, Andris Rachardi, Deandra Aulia Rusdah, E. Safitri, Ely Sudarsono, Alhadi Bustamam\",\"doi\":\"10.14710/JTSISKOM.2021.13898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saham adalah instrumen investasi dengan harga yang sangat fluktuatif. Harga saham dalam kurun waktu tertentu membentuk suatu data runtun waktu. Saat ini, salah satu metode yang cukup populer untuk menangani data runtun adalah Recurrent Neural Network (RNN). Tulisan ini membahas penerapan RNN di masa yang akan datang dalam memprediksi harga saham berdasarkan data harga saham beberapa tahun ke belakang. Tetapi RNN standar memiliki kelemahan yaitu terjadinya kondisi vanishing gradient. Oleh karena itu, arsitektur Long Short Term Memory (LSTM) digunakan pada RNN untuk mengatasi masalah tersebut. Sebagai pembanding, ditampilkan pula hasil prediksi dengan menggunakan model RNN standar. Hasilnya, RNN dengan arsitektur LSTM dapat dengan baik memprediksi harga saham dibandingkan RNN standar yang direfleksikan oleh nilai Mean Absolute Error (MAE) antar kedua model.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2021.13898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.13898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Reccurent Neural Network Untuk Memprediksi Harga Saham
Saham adalah instrumen investasi dengan harga yang sangat fluktuatif. Harga saham dalam kurun waktu tertentu membentuk suatu data runtun waktu. Saat ini, salah satu metode yang cukup populer untuk menangani data runtun adalah Recurrent Neural Network (RNN). Tulisan ini membahas penerapan RNN di masa yang akan datang dalam memprediksi harga saham berdasarkan data harga saham beberapa tahun ke belakang. Tetapi RNN standar memiliki kelemahan yaitu terjadinya kondisi vanishing gradient. Oleh karena itu, arsitektur Long Short Term Memory (LSTM) digunakan pada RNN untuk mengatasi masalah tersebut. Sebagai pembanding, ditampilkan pula hasil prediksi dengan menggunakan model RNN standar. Hasilnya, RNN dengan arsitektur LSTM dapat dengan baik memprediksi harga saham dibandingkan RNN standar yang direfleksikan oleh nilai Mean Absolute Error (MAE) antar kedua model.