关于半椭圆型演化方程的第一边值问题:Perron-Wiener解和锥型准则

IF 0.2 Q4 MATHEMATICS
A. Kogoj
{"title":"关于半椭圆型演化方程的第一边值问题:Perron-Wiener解和锥型准则","authors":"A. Kogoj","doi":"10.6092/ISSN.2240-2829/6694","DOIUrl":null,"url":null,"abstract":"For every bounded open set Ω in R N +1 , we study the first boundary problem for a wide class of hypoelliptic evolution operators. The operators are assumed to be endowed with a well behaved global fundamental solution that allows us to construct a generalized solution in the sense of Perron-Wiener of the Dirichlet problem. Then, we give a criterion of regularity for boundary points in terms of the behavior, close to the point, of the fundamental solution of the involved operator. We deduce exterior conetype criteria for operators of Kolmogorov-Fokker-Planck-type, for the heat operators and more general evolution invariant operators on Lie groups. Our criteria extend and generalize the classical parabolic-cone condition for the classical heat operator due to Effros and Kazdan. The results presented are contained in [K16].","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"7 1","pages":"116-128"},"PeriodicalIF":0.2000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the First Boundary Value Problem for Hypoelliptic Evolution Equations: Perron-Wiener Solutions and Cone-Type Criteria\",\"authors\":\"A. Kogoj\",\"doi\":\"10.6092/ISSN.2240-2829/6694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every bounded open set Ω in R N +1 , we study the first boundary problem for a wide class of hypoelliptic evolution operators. The operators are assumed to be endowed with a well behaved global fundamental solution that allows us to construct a generalized solution in the sense of Perron-Wiener of the Dirichlet problem. Then, we give a criterion of regularity for boundary points in terms of the behavior, close to the point, of the fundamental solution of the involved operator. We deduce exterior conetype criteria for operators of Kolmogorov-Fokker-Planck-type, for the heat operators and more general evolution invariant operators on Lie groups. Our criteria extend and generalize the classical parabolic-cone condition for the classical heat operator due to Effros and Kazdan. The results presented are contained in [K16].\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"7 1\",\"pages\":\"116-128\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/6694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/6694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于rn +1中的每一个有界开集Ω,我们研究了一类广义的次椭圆演化算子的第一边界问题。假设这些算子具有良好的全局基本解,使我们能够构造Dirichlet问题的Perron-Wiener意义上的广义解。然后,根据所涉算子的基本解在点附近的行为,给出了边界点的正则性判据。对于李群上的热算子和更一般的演化不变量算子,我们推导了kolmogorov - fokker - planck型算子的外锥型判据。我们的判据推广和推广了Effros和Kazdan热算子的经典抛物锥条件。给出的结果包含在[K16]中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the First Boundary Value Problem for Hypoelliptic Evolution Equations: Perron-Wiener Solutions and Cone-Type Criteria
For every bounded open set Ω in R N +1 , we study the first boundary problem for a wide class of hypoelliptic evolution operators. The operators are assumed to be endowed with a well behaved global fundamental solution that allows us to construct a generalized solution in the sense of Perron-Wiener of the Dirichlet problem. Then, we give a criterion of regularity for boundary points in terms of the behavior, close to the point, of the fundamental solution of the involved operator. We deduce exterior conetype criteria for operators of Kolmogorov-Fokker-Planck-type, for the heat operators and more general evolution invariant operators on Lie groups. Our criteria extend and generalize the classical parabolic-cone condition for the classical heat operator due to Effros and Kazdan. The results presented are contained in [K16].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信