{"title":"声学悬浮器中单液滴干燥的建模与仿真","authors":"M. Doß, N. Ray, E. Bänsch","doi":"10.1080/07373937.2023.2218162","DOIUrl":null,"url":null,"abstract":"Abstract We present a mathematical model for the full drying process of a single protein formulation droplet taking into account the convective impact arising from its levitation by a standing ultrasound wave. Using the finite element method allows us to compute the evaporation rate directly from the fully resolved heat and mass transfer within and around the levitated droplet. We apply our model to simulate the drying kinetics of pure water and aqueous phosphoglycerate kinase (PGK) droplets under various levitation and drying conditions. Empirical data from the literature are used to validate and discuss our numerical results. The acoustic streaming turns out to accelerate not only the first but also the second drying stage. Moreover, the dehydration of the protein molecules is found to be primarily responsible for their enzymatic inactivation throughout the drying process.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and simulation of single droplet drying in an acoustic levitator\",\"authors\":\"M. Doß, N. Ray, E. Bänsch\",\"doi\":\"10.1080/07373937.2023.2218162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a mathematical model for the full drying process of a single protein formulation droplet taking into account the convective impact arising from its levitation by a standing ultrasound wave. Using the finite element method allows us to compute the evaporation rate directly from the fully resolved heat and mass transfer within and around the levitated droplet. We apply our model to simulate the drying kinetics of pure water and aqueous phosphoglycerate kinase (PGK) droplets under various levitation and drying conditions. Empirical data from the literature are used to validate and discuss our numerical results. The acoustic streaming turns out to accelerate not only the first but also the second drying stage. Moreover, the dehydration of the protein molecules is found to be primarily responsible for their enzymatic inactivation throughout the drying process.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2218162\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2218162","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Modeling and simulation of single droplet drying in an acoustic levitator
Abstract We present a mathematical model for the full drying process of a single protein formulation droplet taking into account the convective impact arising from its levitation by a standing ultrasound wave. Using the finite element method allows us to compute the evaporation rate directly from the fully resolved heat and mass transfer within and around the levitated droplet. We apply our model to simulate the drying kinetics of pure water and aqueous phosphoglycerate kinase (PGK) droplets under various levitation and drying conditions. Empirical data from the literature are used to validate and discuss our numerical results. The acoustic streaming turns out to accelerate not only the first but also the second drying stage. Moreover, the dehydration of the protein molecules is found to be primarily responsible for their enzymatic inactivation throughout the drying process.
期刊介绍:
Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics.
Articles in this multi-disciplinary journal cover the following themes:
-Fundamental and applied aspects of dryers in diverse industrial sectors-
Mathematical modeling of drying and dryers-
Computer modeling of transport processes in multi-phase systems-
Material science aspects of drying-
Transport phenomena in porous media-
Design, scale-up, control and off-design analysis of dryers-
Energy, environmental, safety and techno-economic aspects-
Quality parameters in drying operations-
Pre- and post-drying operations-
Novel drying technologies.
This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.