{"title":"公用事业规模太阳能光伏电站适宜选址的地理空间评估和测绘","authors":"I. Nzelibe, Daniel Damilola Ojediran, M. Moses","doi":"10.7494/geom.2022.16.4.79","DOIUrl":null,"url":null,"abstract":"Geospatial and multi-criteria decision-making techniques are applied to process and analyse datasets for determining suitable areas for multiple utilityscale solar photovoltaic farms in the city of Akure, Ondo State, southwestern Nigeria. Data processed include local electric power distribution system data, Shuttle Radar Topographic Mission elevation data, Landsat 8 and solar global horizontal irradiance. Multi-criteria decision-making techniques adopted are the analytical hierarchy process, reclassification, and overlay. These techniques were carried out considering criteria for siting solar photovoltaic farms. Criteria considered in this study are climate, topography, economic, environmental impact operational and technical while sub-criteria are solar global horizontal irradiance, slope, proximity and land cover. The outcome of the study shows that the study area covering a total extent of ~33,200 ha, 15%, 8%, 13% and 64% are highly suitable, suitable, moderately suitable, and unsuitable respectively for siting utility-scale solar photovoltaic farms within the study area. The study reveals the potential of multiple utility-scale solar photovoltaic farms in the study area. However, the proportions of areas suitable for solar photovoltaic farms are quite lower compared to findings from similar studies conducted in northwestern Nigeria. The study recommends solar photovoltaic sources as an alternative energy source in and around the study area.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm\",\"authors\":\"I. Nzelibe, Daniel Damilola Ojediran, M. Moses\",\"doi\":\"10.7494/geom.2022.16.4.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geospatial and multi-criteria decision-making techniques are applied to process and analyse datasets for determining suitable areas for multiple utilityscale solar photovoltaic farms in the city of Akure, Ondo State, southwestern Nigeria. Data processed include local electric power distribution system data, Shuttle Radar Topographic Mission elevation data, Landsat 8 and solar global horizontal irradiance. Multi-criteria decision-making techniques adopted are the analytical hierarchy process, reclassification, and overlay. These techniques were carried out considering criteria for siting solar photovoltaic farms. Criteria considered in this study are climate, topography, economic, environmental impact operational and technical while sub-criteria are solar global horizontal irradiance, slope, proximity and land cover. The outcome of the study shows that the study area covering a total extent of ~33,200 ha, 15%, 8%, 13% and 64% are highly suitable, suitable, moderately suitable, and unsuitable respectively for siting utility-scale solar photovoltaic farms within the study area. The study reveals the potential of multiple utility-scale solar photovoltaic farms in the study area. However, the proportions of areas suitable for solar photovoltaic farms are quite lower compared to findings from similar studies conducted in northwestern Nigeria. The study recommends solar photovoltaic sources as an alternative energy source in and around the study area.\",\"PeriodicalId\":36672,\"journal\":{\"name\":\"Geomatics and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/geom.2022.16.4.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geom.2022.16.4.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm
Geospatial and multi-criteria decision-making techniques are applied to process and analyse datasets for determining suitable areas for multiple utilityscale solar photovoltaic farms in the city of Akure, Ondo State, southwestern Nigeria. Data processed include local electric power distribution system data, Shuttle Radar Topographic Mission elevation data, Landsat 8 and solar global horizontal irradiance. Multi-criteria decision-making techniques adopted are the analytical hierarchy process, reclassification, and overlay. These techniques were carried out considering criteria for siting solar photovoltaic farms. Criteria considered in this study are climate, topography, economic, environmental impact operational and technical while sub-criteria are solar global horizontal irradiance, slope, proximity and land cover. The outcome of the study shows that the study area covering a total extent of ~33,200 ha, 15%, 8%, 13% and 64% are highly suitable, suitable, moderately suitable, and unsuitable respectively for siting utility-scale solar photovoltaic farms within the study area. The study reveals the potential of multiple utility-scale solar photovoltaic farms in the study area. However, the proportions of areas suitable for solar photovoltaic farms are quite lower compared to findings from similar studies conducted in northwestern Nigeria. The study recommends solar photovoltaic sources as an alternative energy source in and around the study area.