{"title":"关于Kolmogorov多环的循环性","authors":"D. Mar'in, J. Villadelprat","doi":"10.14232/ejqtde.2022.1.35","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:mspace width=\"1em\" />\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>x</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>y</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n</mml:math>\nwith the parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n</mml:math> varying in an open subset <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>N</mml:mi>\n </mml:msup>\n</mml:math>. Compactifying <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>.</mml:mo>\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> inside the family <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mo>,</mo>\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> as we perturb $\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n</mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> is the identity.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cyclicity of Kolmogorov polycycles\",\"authors\":\"D. Mar'in, J. Villadelprat\",\"doi\":\"10.14232/ejqtde.2022.1.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mrow>\\n <mml:mo>{</mml:mo>\\n <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\">\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>x</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>y</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>g</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n </mml:mtable>\\n <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" />\\n </mml:mrow>\\n</mml:math>\\nwith the parameter <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n</mml:math> varying in an open subset <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n</mml:math>. Compactifying <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>.</mml:mo>\\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> inside the family <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mo>,</mo>\\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> as we perturb $\\\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>3</mml:mn>\\n</mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>5</mml:mn>\\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> is the identity.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.35\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.35","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In this paper we study planar polynomial Kolmogorov's differential systems
Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ),
with the parameter μ varying in an open subset Λ⊂RN. Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb $\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5, and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.