{"title":"关于Kolmogorov多环的循环性","authors":"D. Mar'in, J. Villadelprat","doi":"10.14232/ejqtde.2022.1.35","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:mspace width=\"1em\" />\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>x</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>y</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n</mml:math>\nwith the parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n</mml:math> varying in an open subset <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>N</mml:mi>\n </mml:msup>\n</mml:math>. Compactifying <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>.</mml:mo>\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> inside the family <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mo>,</mo>\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> as we perturb $\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n</mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> is the identity.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cyclicity of Kolmogorov polycycles\",\"authors\":\"D. Mar'in, J. Villadelprat\",\"doi\":\"10.14232/ejqtde.2022.1.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mrow>\\n <mml:mo>{</mml:mo>\\n <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\">\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>x</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>y</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>g</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n </mml:mtable>\\n <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" />\\n </mml:mrow>\\n</mml:math>\\nwith the parameter <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n</mml:math> varying in an open subset <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n</mml:math>. Compactifying <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>.</mml:mo>\\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> inside the family <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mo>,</mo>\\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> as we perturb $\\\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>3</mml:mn>\\n</mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>5</mml:mn>\\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> is the identity.</jats:p>\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.35\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.35","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we study planar polynomial Kolmogorov's differential systems
Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ),
with the parameter μ varying in an open subset Λ⊂RN. Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb $\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5, and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.