关于Kolmogorov多环的循环性

IF 1.1 4区 数学 Q1 MATHEMATICS
D. Mar'in, J. Villadelprat
{"title":"关于Kolmogorov多环的循环性","authors":"D. Mar'in, J. Villadelprat","doi":"10.14232/ejqtde.2022.1.35","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:mspace width=\"1em\" />\n <mml:mrow>\n <mml:mo>{</mml:mo>\n <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>x</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>f</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n <mml:mtr>\n <mml:mtd>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>y</mml:mi>\n <mml:mo>˙<!-- ˙ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n</mml:math>\nwith the parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n</mml:math> varying in an open subset <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>N</mml:mi>\n </mml:msup>\n</mml:math>. Compactifying <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>.</mml:mo>\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> inside the family <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:msub>\n <mml:mi>X</mml:mi>\n <mml:mi>μ<!-- μ --></mml:mi>\n </mml:msub>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mo>,</mo>\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> as we perturb $\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n</mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Λ<!-- Λ --></mml:mi>\n <mml:mo>,</mml:mo>\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n</mml:math> is the identity.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cyclicity of Kolmogorov polycycles\",\"authors\":\"D. Mar'in, J. Villadelprat\",\"doi\":\"10.14232/ejqtde.2022.1.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper we study planar polynomial Kolmogorov's differential systems \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:mspace width=\\\"1em\\\" />\\n <mml:mrow>\\n <mml:mo>{</mml:mo>\\n <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\">\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>x</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>f</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>y</mml:mi>\\n <mml:mo>˙<!-- ˙ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>g</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n </mml:mtd>\\n </mml:mtr>\\n </mml:mtable>\\n <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" />\\n </mml:mrow>\\n</mml:math>\\nwith the parameter <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n</mml:math> varying in an open subset <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>N</mml:mi>\\n </mml:msup>\\n</mml:math>. Compactifying <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n</mml:math> to the Poincaré disc, the boundary of the first quadrant is an invariant triangle <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math>, that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>.</mml:mo>\\n</mml:math> We are interested in the cyclicity of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> inside the family <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:msub>\\n <mml:mi>X</mml:mi>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n </mml:msub>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mo>,</mo>\\n</mml:math> i.e., the number of limit cycles that bifurcate from <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> as we perturb $\\\\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>3</mml:mn>\\n</mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>N</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>5</mml:mn>\\n</mml:math>, and in both cases we are able to determine the cyclicity of the polycycle for all <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Λ<!-- Λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n</mml:math> including those parameters for which the return map along <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n</mml:math> is the identity.</jats:p>\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.35\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.35","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究平面多项式Kolmogorov微分系统Xμ{X*=f(X,y;μ),y*=g(x,y;μ),参数μ在开子集∧⊂RN中变化。将Xμ压缩到庞加莱圆盘,第一象限的边界是一个不变三角形Γ,我们假设它是一个双曲多循环,对于所有μ∈∧,其顶点恰好有三个鞍点。我们感兴趣的是Γ在{Xμ}μ∈∧族内的环性,即当我们扰动$\mu.$时从Γ分叉的极限环的数量在我们的主要结果中,我们定义了三个函数,它们对多循环的循环性起着与焦点的循环性的前三个李雅普诺夫量相同的作用。作为一个应用,我们研究了N=3和N=5的两个三次Kolmogorov族,在这两种情况下,我们都能够确定所有μ∈∧的多环的环性,包括那些沿着Γ的返回图是恒等式的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cyclicity of Kolmogorov polycycles
In this paper we study planar polynomial Kolmogorov's differential systems X μ { x ˙ = f ( x , y ; μ ) , y ˙ = g ( x , y ; μ ) , with the parameter μ varying in an open subset Λ R N . Compactifying X μ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ Λ . We are interested in the cyclicity of Γ inside the family { X μ } μ Λ , i.e., the number of limit cycles that bifurcate from Γ as we perturb $\mu.$ In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N = 3 and N = 5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ Λ , including those parameters for which the return map along Γ is the identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信