Alejandro López-de Sancha, Romero Roig, Iara Jiménez, A. Vila-Gispert, H. Guasch
{"title":"筑坝和气候变化对源流生态系统结构的影响——以比利牛斯山脉为例","authors":"Alejandro López-de Sancha, Romero Roig, Iara Jiménez, A. Vila-Gispert, H. Guasch","doi":"10.1080/20442041.2021.2021776","DOIUrl":null,"url":null,"abstract":"ABSTRACT Climate change, damming, and metal pollution are among the main anthropogenic threats to headwater streams. We designed a case study to assess how these stressors impact the ecosystem structure of headwater streams by using the biofilm and macroinvertebrate communities of a Pyrenean stream. We observed a strong seasonal pattern in the stream that interacted with the analysed stressors by having synergistic, but also antagonistic, responses on the ecosystem structural parameters. Both damming and a decrease in precipitation reduced the water flow of the stream and increased its temperature, which promoted an increase in algal and macroinvertebrate biomass at the expense of the biodiversity of their communities, a situation expected to worsen in a climate change context. The decrease in precipitation also increased the concentration of metals and metalloids in the water column and in biofilms, but the water diversion from damming reduced their contributions downstream. The maintenance of an adequate ecological flow in dam-impounded streams is encouraged to overcome these impacts in the current climate change context. More field studies are needed to assess how multiple anthropogenic stressors interact and threaten the ecosystem integrity in a realistic and applied context.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"434 - 450"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impacts of damming and climate change on the ecosystem structure of headwater streams: a case study from the Pyrenees\",\"authors\":\"Alejandro López-de Sancha, Romero Roig, Iara Jiménez, A. Vila-Gispert, H. Guasch\",\"doi\":\"10.1080/20442041.2021.2021776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Climate change, damming, and metal pollution are among the main anthropogenic threats to headwater streams. We designed a case study to assess how these stressors impact the ecosystem structure of headwater streams by using the biofilm and macroinvertebrate communities of a Pyrenean stream. We observed a strong seasonal pattern in the stream that interacted with the analysed stressors by having synergistic, but also antagonistic, responses on the ecosystem structural parameters. Both damming and a decrease in precipitation reduced the water flow of the stream and increased its temperature, which promoted an increase in algal and macroinvertebrate biomass at the expense of the biodiversity of their communities, a situation expected to worsen in a climate change context. The decrease in precipitation also increased the concentration of metals and metalloids in the water column and in biofilms, but the water diversion from damming reduced their contributions downstream. The maintenance of an adequate ecological flow in dam-impounded streams is encouraged to overcome these impacts in the current climate change context. More field studies are needed to assess how multiple anthropogenic stressors interact and threaten the ecosystem integrity in a realistic and applied context.\",\"PeriodicalId\":49061,\"journal\":{\"name\":\"Inland Waters\",\"volume\":\"12 1\",\"pages\":\"434 - 450\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inland Waters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/20442041.2021.2021776\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.2021776","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Impacts of damming and climate change on the ecosystem structure of headwater streams: a case study from the Pyrenees
ABSTRACT Climate change, damming, and metal pollution are among the main anthropogenic threats to headwater streams. We designed a case study to assess how these stressors impact the ecosystem structure of headwater streams by using the biofilm and macroinvertebrate communities of a Pyrenean stream. We observed a strong seasonal pattern in the stream that interacted with the analysed stressors by having synergistic, but also antagonistic, responses on the ecosystem structural parameters. Both damming and a decrease in precipitation reduced the water flow of the stream and increased its temperature, which promoted an increase in algal and macroinvertebrate biomass at the expense of the biodiversity of their communities, a situation expected to worsen in a climate change context. The decrease in precipitation also increased the concentration of metals and metalloids in the water column and in biofilms, but the water diversion from damming reduced their contributions downstream. The maintenance of an adequate ecological flow in dam-impounded streams is encouraged to overcome these impacts in the current climate change context. More field studies are needed to assess how multiple anthropogenic stressors interact and threaten the ecosystem integrity in a realistic and applied context.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.