非线性非严格反馈时滞系统的自适应神经网络控制

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS
Yuanyuan Xu, Bing Chen
{"title":"非线性非严格反馈时滞系统的自适应神经网络控制","authors":"Yuanyuan Xu, Bing Chen","doi":"10.1080/21642583.2020.1833787","DOIUrl":null,"url":null,"abstract":"This paper focuses on adaptive neural control for a class of non-strict feedback nonlinear systems with state delays and input delay. By combining integral transformation with adaptive neural control approach, a backstepping-based adaptive neural control scheme is proposed. The suggested control schemes guarantees that the tracking error converges to a small neighbourhood of the origin, meanwhile, all the closed-loop signals remain bounded. Simulation examples are used to verify the effectiveness of the proposed method.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21642583.2020.1833787","citationCount":"4","resultStr":"{\"title\":\"Adaptive neural network control for nonlinear non-strict feedback time-delay systems\",\"authors\":\"Yuanyuan Xu, Bing Chen\",\"doi\":\"10.1080/21642583.2020.1833787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on adaptive neural control for a class of non-strict feedback nonlinear systems with state delays and input delay. By combining integral transformation with adaptive neural control approach, a backstepping-based adaptive neural control scheme is proposed. The suggested control schemes guarantees that the tracking error converges to a small neighbourhood of the origin, meanwhile, all the closed-loop signals remain bounded. Simulation examples are used to verify the effectiveness of the proposed method.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21642583.2020.1833787\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2020.1833787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2020.1833787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一类具有状态时滞和输入时滞的非严格反馈非线性系统的自适应神经控制。将积分变换与自适应神经控制方法相结合,提出了一种基于反推的自适应神经控制方案。所提出的控制方案保证跟踪误差收敛到原点的一个小邻域,同时所有闭环信号保持有界。通过仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural network control for nonlinear non-strict feedback time-delay systems
This paper focuses on adaptive neural control for a class of non-strict feedback nonlinear systems with state delays and input delay. By combining integral transformation with adaptive neural control approach, a backstepping-based adaptive neural control scheme is proposed. The suggested control schemes guarantees that the tracking error converges to a small neighbourhood of the origin, meanwhile, all the closed-loop signals remain bounded. Simulation examples are used to verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信