容量在时空分数耗散方程中的应用Ⅱ:Lq的Carleson测度表征(ℝ+n+1,μ)L^q(\mathbb{R}_+^{n+1},\mu)−扩展

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pengtao Li, Zhichun Zhai
{"title":"容量在时空分数耗散方程中的应用Ⅱ:Lq的Carleson测度表征(ℝ+n+1,μ)L^q(\\mathbb{R}_+^{n+1},\\mu)−扩展","authors":"Pengtao Li, Zhichun Zhai","doi":"10.1515/anona-2021-0232","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\\\\mathbb{R}_ + ^{n + 1} ,\\\\mu ) −Extension\",\"authors\":\"Pengtao Li, Zhichun Zhai\",\"doi\":\"10.1515/anona-2021-0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\\\mathbb{R}_ + ^{n + 1} ,\\\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0232\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文给出了分数阶Sobolev空间和Lebesgue空间向Lq的扩张的Carleson刻画(ℝ+n+1,μ)L^q(\mathbb{R}_+^{n+1},\mu)。对于分数Sobolev空间的扩展,提供了初步结果,包括估计,包括分数容量、测度、非切向最大函数和时空分数热核的Riesz积分的估计。对于Lebesgue空间的扩展,引入了一种新的与空间-时间分数方程相关的Lp–容量。然后,建立了Lp–容量的一些基本性质,包括它的对偶形式,分数抛物球的Lp–电容,强型和弱型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) −Extension
Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信