{"title":"容量在时空分数耗散方程中的应用Ⅱ:Lq的Carleson测度表征(ℝ+n+1,μ)L^q(\\mathbb{R}_+^{n+1},\\mu)−扩展","authors":"Pengtao Li, Zhichun Zhai","doi":"10.1515/anona-2021-0232","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\\\\mathbb{R}_ + ^{n + 1} ,\\\\mu ) −Extension\",\"authors\":\"Pengtao Li, Zhichun Zhai\",\"doi\":\"10.1515/anona-2021-0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\\\mathbb{R}_ + ^{n + 1} ,\\\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0232\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) −Extension
Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.