线性递归关系、幂级数分布和广义分配方案

IF 0.3 Q4 MATHEMATICS, APPLIED
A. N. Timashev
{"title":"线性递归关系、幂级数分布和广义分配方案","authors":"A. N. Timashev","doi":"10.1515/dma-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract We consider distributions of the power series type determined by the generating functions of sequences satisfying linear recurrence relations with nonnegative coefficients. These functions are represented by power series with positive radius of convergence. An integral limit theorem is proved on the convergence of such distributions to the exponential distribution. For the generalized allocation scheme generated by these linear relations a local normal theorem for the total number of components is proved. As a consequence of more general results of the author, a limit theorem is stated containing sufficient conditions under which the distributions of the number of components having a given volume converge to the Poisson distribution.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"47 - 58"},"PeriodicalIF":0.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear recurrent relations, power series distributions, and generalized allocation scheme\",\"authors\":\"A. N. Timashev\",\"doi\":\"10.1515/dma-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider distributions of the power series type determined by the generating functions of sequences satisfying linear recurrence relations with nonnegative coefficients. These functions are represented by power series with positive radius of convergence. An integral limit theorem is proved on the convergence of such distributions to the exponential distribution. For the generalized allocation scheme generated by these linear relations a local normal theorem for the total number of components is proved. As a consequence of more general results of the author, a limit theorem is stated containing sufficient conditions under which the distributions of the number of components having a given volume converge to the Poisson distribution.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"47 - 58\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要考虑由满足非负系数线性递推关系的序列的生成函数决定的幂级数型分布。这些函数用收敛半径为正的幂级数表示。证明了这类分布收敛于指数分布的一个积分极限定理。对于由这些线性关系生成的广义分配方案,证明了总分量数的局部正规定理。作为作者更一般结果的结果,给出了一个极限定理,它包含了给定体积的分量数的分布收敛于泊松分布的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear recurrent relations, power series distributions, and generalized allocation scheme
Abstract We consider distributions of the power series type determined by the generating functions of sequences satisfying linear recurrence relations with nonnegative coefficients. These functions are represented by power series with positive radius of convergence. An integral limit theorem is proved on the convergence of such distributions to the exponential distribution. For the generalized allocation scheme generated by these linear relations a local normal theorem for the total number of components is proved. As a consequence of more general results of the author, a limit theorem is stated containing sufficient conditions under which the distributions of the number of components having a given volume converge to the Poisson distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信