基于知识的数据中心数字孪生模型校正与约简

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ruihang Wang, Deneng Xia, Zhi-Ying Cao, Yonggang Wen, Rui Tan, Xiaoxia Zhou
{"title":"基于知识的数据中心数字孪生模型校正与约简","authors":"Ruihang Wang, Deneng Xia, Zhi-Ying Cao, Yonggang Wen, Rui Tan, Xiaoxia Zhou","doi":"10.1145/3604283","DOIUrl":null,"url":null,"abstract":"Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Data Center Digital Twins via Knowledge-based Model Calibration and Reduction\",\"authors\":\"Ruihang Wang, Deneng Xia, Zhi-Ying Cao, Yonggang Wen, Rui Tan, Xiaoxia Zhou\",\"doi\":\"10.1145/3604283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3604283\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3604283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

计算流体动力学(CFD)模型已广泛用于数据中心的原型设计。将它们发展成高保真、实时的数字孪生是数据中心在线运营的需要。然而,CFD模型往往精度不理想,计算开销大。手动校准CFD模型参数是一项繁琐且费力的工作。现有的自动校准方法采用启发式方法来搜索模型配置。然而,每个搜索步骤都需要一个长时间的反复求解CFD模型的过程,这使得它们不太适用于复杂的CFD模型。本文介绍了一种基于知识的神经代理方法calibre,该方法通过迭代四个步骤来校准CFD模型:1)训练神经代理模型;2)通过神经代理再训练找到最佳参数;3)将找到的参数配置回CFD模型;4)使用传感器测量数据验证CFD模型。因此,参数搜索被卸载到轻量级神经代理。为了加快kalbre的收敛速度,我们在训练数据初始化和代理架构设计中加入了先验知识。在64核处理器上进行大约10小时的计算,calibre在校准两个承载数千台服务器的生产数据大厅的CFD模型时实现了0.57°C和0.88°C的平均绝对误差(MAEs)。为了加速CFD模拟,我们进一步提出了结合能量平衡原理的Kalibreduce来降低校正后的CFD模型的阶数。评估表明,模型减小只引入0.1°C至0.27°C的额外误差,同时将基于cfd的模拟速度提高了数千倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Data Center Digital Twins via Knowledge-based Model Calibration and Reduction
Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信