{"title":"基于知识的数据中心数字孪生模型校正与约简","authors":"Ruihang Wang, Deneng Xia, Zhi-Ying Cao, Yonggang Wen, Rui Tan, Xiaoxia Zhou","doi":"10.1145/3604283","DOIUrl":null,"url":null,"abstract":"Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Data Center Digital Twins via Knowledge-based Model Calibration and Reduction\",\"authors\":\"Ruihang Wang, Deneng Xia, Zhi-Ying Cao, Yonggang Wen, Rui Tan, Xiaoxia Zhou\",\"doi\":\"10.1145/3604283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3604283\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3604283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Toward Data Center Digital Twins via Knowledge-based Model Calibration and Reduction
Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However, CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics to search the model configurations. However, each search step requires a long-lasting process of repeatedly solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i) training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii) configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors (MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.