Boit固结模型的Crouzeix-Raviart非协调和节点协调有限元空间的耦合方法

IF 0.9 4区 数学 Q2 MATHEMATICS
Yuping Zeng, M. Zhong
{"title":"Boit固结模型的Crouzeix-Raviart非协调和节点协调有限元空间的耦合方法","authors":"Yuping Zeng, M. Zhong","doi":"10.4208/jcm.2212-m2021-0231","DOIUrl":null,"url":null,"abstract":"A mixed finite element method is presented for the Biot consolidation problem in poroe-lasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart nonconforming finite elements, while the fluid pressure is approximated by using the node conforming finite elements. The well-posedness of the fully discrete scheme is established, and a corresponding priori error estimate with optimal order in the energy norm is also derived. Numerical experiments are provided to validate the theoretical results. Mathematics","PeriodicalId":50225,"journal":{"name":"Journal of Computational Mathematics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coupled Method Combining Crouzeix-Raviart Nonconforming and Node Conforming Finite Element Spaces for Boit Consolidation Model\",\"authors\":\"Yuping Zeng, M. Zhong\",\"doi\":\"10.4208/jcm.2212-m2021-0231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixed finite element method is presented for the Biot consolidation problem in poroe-lasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart nonconforming finite elements, while the fluid pressure is approximated by using the node conforming finite elements. The well-posedness of the fully discrete scheme is established, and a corresponding priori error estimate with optimal order in the energy norm is also derived. Numerical experiments are provided to validate the theoretical results. Mathematics\",\"PeriodicalId\":50225,\"journal\":{\"name\":\"Journal of Computational Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jcm.2212-m2021-0231\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2212-m2021-0231","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求解孔隙弹性中Biot固结问题的混合有限元方法。更准确地说,位移是通过使用Crouzeix-Raviart非协调有限元来近似的,而流体压力是通过使用节点协调有限元近似的。建立了完全离散格式的适定性,并导出了相应的能量范数中最优阶的先验误差估计。数值实验验证了理论结果。数学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Coupled Method Combining Crouzeix-Raviart Nonconforming and Node Conforming Finite Element Spaces for Boit Consolidation Model
A mixed finite element method is presented for the Biot consolidation problem in poroe-lasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart nonconforming finite elements, while the fluid pressure is approximated by using the node conforming finite elements. The well-posedness of the fully discrete scheme is established, and a corresponding priori error estimate with optimal order in the energy norm is also derived. Numerical experiments are provided to validate the theoretical results. Mathematics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
1130
审稿时长
2 months
期刊介绍: Journal of Computational Mathematics (JCM) is an international scientific computing journal founded by Professor Feng Kang in 1983, which is the first Chinese computational mathematics journal published in English. JCM covers all branches of modern computational mathematics such as numerical linear algebra, numerical optimization, computational geometry, numerical PDEs, and inverse problems. JCM has been sponsored by the Institute of Computational Mathematics of the Chinese Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信