{"title":"关于形式局部上同模的湮灭子","authors":"S. Rezaei","doi":"10.14492/hokmj/1550480649","DOIUrl":null,"url":null,"abstract":"Let a denote an ideal in a commutative Noetherian local ring (R,m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM). In this paper we calculate the annihilator of the top formal local cohomology module Fda(M). In fact, we prove that AnnR(F d a(M)) = AnnR(M/UR(a,M)), where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}. We give a description of UR(a,M) and we will show that AnnR(F d a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj), where 0 = ∩n j=1 Nj denotes a reduced primary decomposition of the zero submodule 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n. Also, we determine the radical of the annihilator of Fda(M). We will prove that √ AnnR(Fa(M)) = AnnR(M/GR(a,M)), where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆ AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14492/hokmj/1550480649","citationCount":"1","resultStr":"{\"title\":\"On the annihilators of formal local cohomology modules\",\"authors\":\"S. Rezaei\",\"doi\":\"10.14492/hokmj/1550480649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a denote an ideal in a commutative Noetherian local ring (R,m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM). In this paper we calculate the annihilator of the top formal local cohomology module Fda(M). In fact, we prove that AnnR(F d a(M)) = AnnR(M/UR(a,M)), where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}. We give a description of UR(a,M) and we will show that AnnR(F d a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj), where 0 = ∩n j=1 Nj denotes a reduced primary decomposition of the zero submodule 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n. Also, we determine the radical of the annihilator of Fda(M). We will prove that √ AnnR(Fa(M)) = AnnR(M/GR(a,M)), where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆ AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.14492/hokmj/1550480649\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/1550480649\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/1550480649","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
设a表示交换诺瑟局部环(R,m)中的理想,m表示维数为d的非零有限生成R模。设d:= dim(m /aM)。本文计算了上形式局部上同模Fda(M)的湮灭子。事实上,我们证明了AnnR(F d a(M)) = AnnR(M/UR(a,M)),其中UR(a,M):=∪{N: N≤M and dim(N/aN) < dim(M/aM)}。我们给出了UR(a,M)的一个描述,并且我们将证明AnnR(F d a(M)) = AnnR(M/∩pj∈AsshRM∩V(a) Nj),其中0 =∩n j=1 Nj表示M中的零子模块0的一个约简初分解,并且Nj是M的一个pj-主子模块,对于所有j=1,…, n。同时,我们确定了Fda(M)湮灭子的原子量。我们将证明√AnnR(Fa(M)) = AnnR(M/GR(a,M)),其中GR(a,M)表示M的最大子模块,使得AssR(M)∩V(a)≤AssR(M/GR(a,M)),且AssR(M)表示集合{p∈AssM: dimR/p = dimM}。
On the annihilators of formal local cohomology modules
Let a denote an ideal in a commutative Noetherian local ring (R,m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM). In this paper we calculate the annihilator of the top formal local cohomology module Fda(M). In fact, we prove that AnnR(F d a(M)) = AnnR(M/UR(a,M)), where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}. We give a description of UR(a,M) and we will show that AnnR(F d a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj), where 0 = ∩n j=1 Nj denotes a reduced primary decomposition of the zero submodule 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n. Also, we determine the radical of the annihilator of Fda(M). We will prove that √ AnnR(Fa(M)) = AnnR(M/GR(a,M)), where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆ AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.
期刊介绍:
The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.