基于SMOTE-SVM的肺部疾病分期最优渐进分类研究

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
R. Sujitha, B. Paramasivan
{"title":"基于SMOTE-SVM的肺部疾病分期最优渐进分类研究","authors":"R. Sujitha, B. Paramasivan","doi":"10.1080/00051144.2023.2218167","DOIUrl":null,"url":null,"abstract":"Data used in big data applications are typically kept in decentralized computing resources in the real world, which has an impact on the design of artificial intelligence algorithms. When there are significantly more observations from one class than from another, the dataset is said to be imbalanced. Therefore, in this work, the study elaborates the model as SMOTE-SVM which resolves imbalance issues in sampling the data and improves overall accuracy to 94%. The model deploys K-nearest neighbours to compute the difference between samples and to balance the samples, it computes the kernel space. Further, to optimize the classification, GWO optimizer merges with SMOTE-SVM to achieve enhanced performance. GWO (Grey Wolf Optimizer) induces greedy selection to perform optimization among classification. It is important to remember that grey wolves have a flexible social structure that might change the hierarchy. As the mobilization continues, the grey wolves are reconstructed with the distance between them and their prey, or more specifically, in accordance with the resultant value of the fitness. In addition, to prove the efficiency, the following performance metrics are measured-Overall Accuracy, Classification Accuracy, AUC and ROC.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal progressive classification study using SMOTE-SVM for stages of lung disease\",\"authors\":\"R. Sujitha, B. Paramasivan\",\"doi\":\"10.1080/00051144.2023.2218167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data used in big data applications are typically kept in decentralized computing resources in the real world, which has an impact on the design of artificial intelligence algorithms. When there are significantly more observations from one class than from another, the dataset is said to be imbalanced. Therefore, in this work, the study elaborates the model as SMOTE-SVM which resolves imbalance issues in sampling the data and improves overall accuracy to 94%. The model deploys K-nearest neighbours to compute the difference between samples and to balance the samples, it computes the kernel space. Further, to optimize the classification, GWO optimizer merges with SMOTE-SVM to achieve enhanced performance. GWO (Grey Wolf Optimizer) induces greedy selection to perform optimization among classification. It is important to remember that grey wolves have a flexible social structure that might change the hierarchy. As the mobilization continues, the grey wolves are reconstructed with the distance between them and their prey, or more specifically, in accordance with the resultant value of the fitness. In addition, to prove the efficiency, the following performance metrics are measured-Overall Accuracy, Classification Accuracy, AUC and ROC.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2218167\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2218167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal progressive classification study using SMOTE-SVM for stages of lung disease
Data used in big data applications are typically kept in decentralized computing resources in the real world, which has an impact on the design of artificial intelligence algorithms. When there are significantly more observations from one class than from another, the dataset is said to be imbalanced. Therefore, in this work, the study elaborates the model as SMOTE-SVM which resolves imbalance issues in sampling the data and improves overall accuracy to 94%. The model deploys K-nearest neighbours to compute the difference between samples and to balance the samples, it computes the kernel space. Further, to optimize the classification, GWO optimizer merges with SMOTE-SVM to achieve enhanced performance. GWO (Grey Wolf Optimizer) induces greedy selection to perform optimization among classification. It is important to remember that grey wolves have a flexible social structure that might change the hierarchy. As the mobilization continues, the grey wolves are reconstructed with the distance between them and their prey, or more specifically, in accordance with the resultant value of the fitness. In addition, to prove the efficiency, the following performance metrics are measured-Overall Accuracy, Classification Accuracy, AUC and ROC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信