{"title":"多单元预混燃烧室喷油器耦合横向不稳定性","authors":"John J. Philo, Rohan M. Gejji, C. Slabaugh","doi":"10.1177/1756827720932832","DOIUrl":null,"url":null,"abstract":"Combustion instabilities in a high-pressure, multi-element combustor are studied in order to understand the relationship between the chamber and injector dynamics. A linear array of seven injectors supplies premixed natural gas and air into a rectangular combustion chamber designed to promote high-frequency, transverse thermoacoustic instabilities. The effect of equivalence ratio on the combustion dynamics was investigated for two injector lengths, 62.5 and 125 mm. For all operating conditions, the 125 mm injectors promote high-amplitude instabilities of the fundamental transverse (1T) mode, which has a frequency of 1750–1850 Hz. Reducing the injector length significantly lowers the instability amplitudes for all operating conditions and, for lower equivalence ratio cases, excites an additional mode near 1550 Hz. The delineating feature controlling the growth of the instabilities in each injector configuration is the coupling with axial pressure fluctuations in the injectors that occur in response to the transverse modes in the chamber.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827720932832","citationCount":"4","resultStr":"{\"title\":\"Injector-coupled transverse instabilities in a multi-element premixed combustor\",\"authors\":\"John J. Philo, Rohan M. Gejji, C. Slabaugh\",\"doi\":\"10.1177/1756827720932832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combustion instabilities in a high-pressure, multi-element combustor are studied in order to understand the relationship between the chamber and injector dynamics. A linear array of seven injectors supplies premixed natural gas and air into a rectangular combustion chamber designed to promote high-frequency, transverse thermoacoustic instabilities. The effect of equivalence ratio on the combustion dynamics was investigated for two injector lengths, 62.5 and 125 mm. For all operating conditions, the 125 mm injectors promote high-amplitude instabilities of the fundamental transverse (1T) mode, which has a frequency of 1750–1850 Hz. Reducing the injector length significantly lowers the instability amplitudes for all operating conditions and, for lower equivalence ratio cases, excites an additional mode near 1550 Hz. The delineating feature controlling the growth of the instabilities in each injector configuration is the coupling with axial pressure fluctuations in the injectors that occur in response to the transverse modes in the chamber.\",\"PeriodicalId\":49046,\"journal\":{\"name\":\"International Journal of Spray and Combustion Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756827720932832\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spray and Combustion Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756827720932832\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756827720932832","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Injector-coupled transverse instabilities in a multi-element premixed combustor
Combustion instabilities in a high-pressure, multi-element combustor are studied in order to understand the relationship between the chamber and injector dynamics. A linear array of seven injectors supplies premixed natural gas and air into a rectangular combustion chamber designed to promote high-frequency, transverse thermoacoustic instabilities. The effect of equivalence ratio on the combustion dynamics was investigated for two injector lengths, 62.5 and 125 mm. For all operating conditions, the 125 mm injectors promote high-amplitude instabilities of the fundamental transverse (1T) mode, which has a frequency of 1750–1850 Hz. Reducing the injector length significantly lowers the instability amplitudes for all operating conditions and, for lower equivalence ratio cases, excites an additional mode near 1550 Hz. The delineating feature controlling the growth of the instabilities in each injector configuration is the coupling with axial pressure fluctuations in the injectors that occur in response to the transverse modes in the chamber.
期刊介绍:
International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...