棉花除草剂方案对抗草甘膦掌叶苋杂草种群轨迹和频率的影响

IF 2.1 2区 农林科学 Q2 AGRONOMY
Weed Science Pub Date : 2022-07-29 DOI:10.1017/wsc.2022.41
F. H. Oreja, M. Inman, D. Jordan, M. Vann, Katherine M. Jennings, R. León
{"title":"棉花除草剂方案对抗草甘膦掌叶苋杂草种群轨迹和频率的影响","authors":"F. H. Oreja, M. Inman, D. Jordan, M. Vann, Katherine M. Jennings, R. León","doi":"10.1017/wsc.2022.41","DOIUrl":null,"url":null,"abstract":"Abstract The adoption of dicamba-resistant cotton (Gossypium hirsutum L.) cultivars allows using dicamba to reduce weed populations across growing seasons. However, the overuse of this tool risks selecting new herbicide-resistant biotypes. The objectives of this research were to determine the population trajectories of several weed species and track the frequency of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) over 8 yr in dicamba-resistant cotton. An experiment was established in North Carolina in 2011, and during the first 4 yr, different herbicide programs were applied. These programs included postemergence applications of glyphosate, alone or with dicamba, with or without residual herbicides. During the last 4 yr, all programs received glyphosate plus dicamba. Biennial rotations of postemergence applications of glyphosate only and glyphosate plus dicamba postemergence with and without preemergence herbicides were also included. Sequential applications of glyphosate plus dicamba were applied to the entire test area for the final 4 yr of the study. No herbicide program was entirely successful in controlling the weed community. Weed population trajectories were different according to species and herbicide program, creating all possible outcomes; some increased, others decreased, and others remained stable. Density of resistant A. palmeri increased during the first 4 yr with glyphosate-only programs (up to 11,739 plants m–2) and decreased a 96% during the final 4 yr, when glyphosate plus dicamba was implemented. This species had a strong influence on population levels of other weed species in the community. Goosegrass [Eleusine indica (L.) Gaertn.] was not affected by A. palmeri population levels and even increased its density in some herbicide programs, indicating that not only herbicide resistance but also reproductive rates and competitive dynamics are critical for determining weed population trajectories under intensive herbicide-based control programs. Frequency of glyphosate resistance reached a maximum of 62% after 4 yr, and those levels were maintained until the end of the experiment.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"70 1","pages":"587 - 594"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Cotton Herbicide Programs on Weed Population Trajectories and Frequency of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri)\",\"authors\":\"F. H. Oreja, M. Inman, D. Jordan, M. Vann, Katherine M. Jennings, R. León\",\"doi\":\"10.1017/wsc.2022.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The adoption of dicamba-resistant cotton (Gossypium hirsutum L.) cultivars allows using dicamba to reduce weed populations across growing seasons. However, the overuse of this tool risks selecting new herbicide-resistant biotypes. The objectives of this research were to determine the population trajectories of several weed species and track the frequency of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) over 8 yr in dicamba-resistant cotton. An experiment was established in North Carolina in 2011, and during the first 4 yr, different herbicide programs were applied. These programs included postemergence applications of glyphosate, alone or with dicamba, with or without residual herbicides. During the last 4 yr, all programs received glyphosate plus dicamba. Biennial rotations of postemergence applications of glyphosate only and glyphosate plus dicamba postemergence with and without preemergence herbicides were also included. Sequential applications of glyphosate plus dicamba were applied to the entire test area for the final 4 yr of the study. No herbicide program was entirely successful in controlling the weed community. Weed population trajectories were different according to species and herbicide program, creating all possible outcomes; some increased, others decreased, and others remained stable. Density of resistant A. palmeri increased during the first 4 yr with glyphosate-only programs (up to 11,739 plants m–2) and decreased a 96% during the final 4 yr, when glyphosate plus dicamba was implemented. This species had a strong influence on population levels of other weed species in the community. Goosegrass [Eleusine indica (L.) Gaertn.] was not affected by A. palmeri population levels and even increased its density in some herbicide programs, indicating that not only herbicide resistance but also reproductive rates and competitive dynamics are critical for determining weed population trajectories under intensive herbicide-based control programs. Frequency of glyphosate resistance reached a maximum of 62% after 4 yr, and those levels were maintained until the end of the experiment.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\"70 1\",\"pages\":\"587 - 594\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2022.41\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2022.41","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

摘要

摘要采用麦草畏抗性棉花(Gossypium hirsutum L.)品种可以在不同的生长季节使用麦草畏来减少杂草数量。然而,过度使用这种工具有可能选择新的抗除草剂生物型。本研究的目的是确定几种杂草的种群轨迹,并跟踪抗草甘膦(GR)Palmer amaranth(Amaranthus palmeri S.Watson)在抗麦草畏棉花中8年内的频率。2011年在北卡罗来纳州进行了一项实验,在最初的4年里,采用了不同的除草剂方案。这些方案包括单独或与麦草畏一起使用草甘膦,同时使用或不使用残留除草剂。在过去的4年里,所有项目都收到了草甘膦和麦草畏。还包括仅草甘膦和草甘膦加麦草畏羽化后施用的两年期轮换,使用和不使用羽化前除草剂。在研究的最后4年,在整个试验区连续施用草甘膦和麦草畏。没有一个除草剂项目能完全成功地控制杂草群落。杂草种群轨迹因物种和除草剂计划而异,产生了所有可能的结果;一些增加,另一些减少,还有一些保持稳定。在仅使用草甘膦的项目的前4年,抗药性A.palmeri的密度增加(高达11739株m-2),在实施草甘膦加麦草畏的最后4年,密度下降了96%。该物种对群落中其他杂草物种的种群水平有很大影响。在一些除草剂项目中,鹅掌草[Eleusine indica(L.)Gaertn.]不受A.palmeri种群水平的影响,甚至增加了其密度,这表明在基于除草剂的强化控制项目下,不仅除草剂抗性,繁殖率和竞争动态对确定杂草种群轨迹至关重要。草甘膦抗性的频率在4年后达到最大62%,并且这些水平一直保持到实验结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Cotton Herbicide Programs on Weed Population Trajectories and Frequency of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri)
Abstract The adoption of dicamba-resistant cotton (Gossypium hirsutum L.) cultivars allows using dicamba to reduce weed populations across growing seasons. However, the overuse of this tool risks selecting new herbicide-resistant biotypes. The objectives of this research were to determine the population trajectories of several weed species and track the frequency of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) over 8 yr in dicamba-resistant cotton. An experiment was established in North Carolina in 2011, and during the first 4 yr, different herbicide programs were applied. These programs included postemergence applications of glyphosate, alone or with dicamba, with or without residual herbicides. During the last 4 yr, all programs received glyphosate plus dicamba. Biennial rotations of postemergence applications of glyphosate only and glyphosate plus dicamba postemergence with and without preemergence herbicides were also included. Sequential applications of glyphosate plus dicamba were applied to the entire test area for the final 4 yr of the study. No herbicide program was entirely successful in controlling the weed community. Weed population trajectories were different according to species and herbicide program, creating all possible outcomes; some increased, others decreased, and others remained stable. Density of resistant A. palmeri increased during the first 4 yr with glyphosate-only programs (up to 11,739 plants m–2) and decreased a 96% during the final 4 yr, when glyphosate plus dicamba was implemented. This species had a strong influence on population levels of other weed species in the community. Goosegrass [Eleusine indica (L.) Gaertn.] was not affected by A. palmeri population levels and even increased its density in some herbicide programs, indicating that not only herbicide resistance but also reproductive rates and competitive dynamics are critical for determining weed population trajectories under intensive herbicide-based control programs. Frequency of glyphosate resistance reached a maximum of 62% after 4 yr, and those levels were maintained until the end of the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weed Science
Weed Science 农林科学-农艺学
CiteScore
4.60
自引率
12.00%
发文量
64
审稿时长
12-24 weeks
期刊介绍: Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include: - the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds - herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation - ecology of cropping and other agricultural systems as they relate to weed management - biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops - effect of weed management on soil, air and water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信