具有负Bakry-Émery曲率的图的距离界

Pub Date : 2017-05-23 DOI:10.1515/agms-2019-0001
Shiping Liu, Florentin Münch, N. Peyerimhoff, Christian Rose
{"title":"具有负Bakry-Émery曲率的图的距离界","authors":"Shiping Liu, Florentin Münch, N. Peyerimhoff, Christian Rose","doi":"10.1515/agms-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract We prove distance bounds for graphs possessing positive Bakry-Émery curvature apart from an exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices is finite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results seem to be the first assuming non-constant Bakry-Émery curvature assumptions on graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0001","citationCount":"13","resultStr":"{\"title\":\"Distance Bounds for Graphs with Some Negative Bakry-Émery Curvature\",\"authors\":\"Shiping Liu, Florentin Münch, N. Peyerimhoff, Christian Rose\",\"doi\":\"10.1515/agms-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove distance bounds for graphs possessing positive Bakry-Émery curvature apart from an exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices is finite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results seem to be the first assuming non-constant Bakry-Émery curvature assumptions on graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2019-0001\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

摘要我们证明了具有正Bakry-Émery曲率的图的距离界,除了一个例外集,其中曲率是非正的。如果非正弯曲顶点的集合是有限的,那么图允许直径的显式上界。否则,图是管状邻域的子集,在非正弯曲顶点周围具有显式半径。这些结果似乎是第一个假设图上的非常数Bakry-Émery曲率假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Distance Bounds for Graphs with Some Negative Bakry-Émery Curvature
Abstract We prove distance bounds for graphs possessing positive Bakry-Émery curvature apart from an exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices is finite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results seem to be the first assuming non-constant Bakry-Émery curvature assumptions on graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信