含空气输水管道排空动作的二维模拟

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES
Duban A. Paternina-Verona, Luis C. Flórez-Acero, Ó. E. Coronado-Hernández, Héctor G. Espinoza-Román, V. S. Fuertes-Miquel, H. Ramos
{"title":"含空气输水管道排空动作的二维模拟","authors":"Duban A. Paternina-Verona, Luis C. Flórez-Acero, Ó. E. Coronado-Hernández, Héctor G. Espinoza-Román, V. S. Fuertes-Miquel, H. Ramos","doi":"10.1080/1573062X.2023.2211053","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"801 - 812"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air\",\"authors\":\"Duban A. Paternina-Verona, Luis C. Flórez-Acero, Ó. E. Coronado-Hernández, Héctor G. Espinoza-Román, V. S. Fuertes-Miquel, H. Ramos\",\"doi\":\"10.1080/1573062X.2023.2211053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"801 - 812\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2211053\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2211053","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究考察了在允许空气进入的情况下进行排空操作时,亚大气压力对输水管道的影响。以前的研究已经研究过这个问题,但没有详细研究过。本研究使用OpenFOAM软件建立了一个二维模型,用于分析单个管道中夹带空气的不同排空操作。结果显示了球阀开度的敏感性,表明球阀开度每增加5%,绝对压降可以降低到23%。还分析了截留气穴的大小和不同进气孔的影响。数值模型表明,在控制亚大气压力条件下,带进气孔的管道中,排水阀开启的百分比和次数的选择至关重要。最后,本研究证明了二维模型显示含截留空气管道水力排水参数敏感性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
ABSTRACT This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信