用可持续改性富集纤维表面提高椰壳纤维增强弹性聚氨酯生态复合材料的性能

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ümit Tayfun, A. Akar, F. Hacıoğlu, M. Doğan
{"title":"用可持续改性富集纤维表面提高椰壳纤维增强弹性聚氨酯生态复合材料的性能","authors":"Ümit Tayfun, A. Akar, F. Hacıoğlu, M. Doğan","doi":"10.1680/jgrma.22.00103","DOIUrl":null,"url":null,"abstract":"Tuning the chemical functionality of lignocellulosic fiber plays a key role in the development of mechanically strong composites to overcome the leakage of compatibility between composite phases which is a major challenge in multidimensional applications of eco-composites. Herein, the coconut fiber (CF) surface was enriched via four kinds of modification routes including mercerization, amino-functional silane treatment, bio-based epoxy resin sizing, and isocyanate treatment to enhance its interfacial adhesion to thermoplastic polyurethane (TPU) matrix. Tensile strength and Shore-hardness parameters of composites were improved by surface-modified CF inclusions. Thermo-mechanical response of TPU was optimized after CF loadings regardless of treatment type. Composite involving silane-modified CF exhibited the lowest water uptake due to the hydrophobic behavior of the silane layer. The increase in interfacial interaction between the TPU matrix and modified CF was confirmed by SEM investigations. The chemically enriched surface of CF confers the performance of composites thanks to improved adhesion in the TPU-CF interface.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance enhancement of coir fiber-reinforced elastomeric polyurethane eco-composites via the enrichment of fiber surface using sustainable modifications\",\"authors\":\"Ümit Tayfun, A. Akar, F. Hacıoğlu, M. Doğan\",\"doi\":\"10.1680/jgrma.22.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning the chemical functionality of lignocellulosic fiber plays a key role in the development of mechanically strong composites to overcome the leakage of compatibility between composite phases which is a major challenge in multidimensional applications of eco-composites. Herein, the coconut fiber (CF) surface was enriched via four kinds of modification routes including mercerization, amino-functional silane treatment, bio-based epoxy resin sizing, and isocyanate treatment to enhance its interfacial adhesion to thermoplastic polyurethane (TPU) matrix. Tensile strength and Shore-hardness parameters of composites were improved by surface-modified CF inclusions. Thermo-mechanical response of TPU was optimized after CF loadings regardless of treatment type. Composite involving silane-modified CF exhibited the lowest water uptake due to the hydrophobic behavior of the silane layer. The increase in interfacial interaction between the TPU matrix and modified CF was confirmed by SEM investigations. The chemically enriched surface of CF confers the performance of composites thanks to improved adhesion in the TPU-CF interface.\",\"PeriodicalId\":12929,\"journal\":{\"name\":\"Green Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jgrma.22.00103\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.22.00103","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

调整木质纤维素纤维的化学功能在开发机械强度强的复合材料以克服复合物相之间相容性的泄漏方面发挥着关键作用,这是生态复合材料多维应用中的一个主要挑战。本文通过丝光、氨基硅烷处理、生物基环氧树脂施胶和异氰酸酯处理四种改性途径对椰子纤维(CF)表面进行了富集,以增强其与热塑性聚氨酯(TPU)基体的界面粘附性。表面改性CF夹杂物提高了复合材料的拉伸强度和肖氏硬度参数。在CF负载后,无论处理类型如何,TPU的热机械响应都得到了优化。由于硅烷层的疏水行为,包含硅烷改性CF的复合材料表现出最低的吸水率。SEM研究证实了TPU基体和改性CF之间界面相互作用的增加。CF的化学富集表面由于改善了TPU-CF界面的粘附性而赋予了复合材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance enhancement of coir fiber-reinforced elastomeric polyurethane eco-composites via the enrichment of fiber surface using sustainable modifications
Tuning the chemical functionality of lignocellulosic fiber plays a key role in the development of mechanically strong composites to overcome the leakage of compatibility between composite phases which is a major challenge in multidimensional applications of eco-composites. Herein, the coconut fiber (CF) surface was enriched via four kinds of modification routes including mercerization, amino-functional silane treatment, bio-based epoxy resin sizing, and isocyanate treatment to enhance its interfacial adhesion to thermoplastic polyurethane (TPU) matrix. Tensile strength and Shore-hardness parameters of composites were improved by surface-modified CF inclusions. Thermo-mechanical response of TPU was optimized after CF loadings regardless of treatment type. Composite involving silane-modified CF exhibited the lowest water uptake due to the hydrophobic behavior of the silane layer. The increase in interfacial interaction between the TPU matrix and modified CF was confirmed by SEM investigations. The chemically enriched surface of CF confers the performance of composites thanks to improved adhesion in the TPU-CF interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信