基于微加工技术的双目微透镜成像系统及其在静脉增强显示中的应用

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Si Di, Jian Jin
{"title":"基于微加工技术的双目微透镜成像系统及其在静脉增强显示中的应用","authors":"Si Di, Jian Jin","doi":"10.1080/15599612.2019.1634166","DOIUrl":null,"url":null,"abstract":"Abstract Vein display device can significantly increase the success rate of intravenous injection. However, traditional vein display devices only contain near-infrared image information, which inevitably loses skin color information. In this article, a binocular microlens was fabricated by micro-fabrication technology. Then, a smart binocular microlens imaging system is set up. By this system, the near-infrared image with venous distribution and visible light image with actual skin color can be obtained simultaneously. In addition, an improved image fusing algorithm is proposed. The image fusing result shows that the venous details can be clearly shown and the background color of the hand also can be well preserved. Therefore, the proposed scheme can provide more real vein information. As the smart structure of the binocular microlens, the dual-bands microlens imaging system has the potential for miniaturization and could integrate with intelligent glasses for assisting intravenous injection.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"13 1","pages":"30 - 40"},"PeriodicalIF":6.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2019.1634166","citationCount":"6","resultStr":"{\"title\":\"Binocular microlens imaging system based on micro fabrication technology and its application in vein-enhanced display\",\"authors\":\"Si Di, Jian Jin\",\"doi\":\"10.1080/15599612.2019.1634166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Vein display device can significantly increase the success rate of intravenous injection. However, traditional vein display devices only contain near-infrared image information, which inevitably loses skin color information. In this article, a binocular microlens was fabricated by micro-fabrication technology. Then, a smart binocular microlens imaging system is set up. By this system, the near-infrared image with venous distribution and visible light image with actual skin color can be obtained simultaneously. In addition, an improved image fusing algorithm is proposed. The image fusing result shows that the venous details can be clearly shown and the background color of the hand also can be well preserved. Therefore, the proposed scheme can provide more real vein information. As the smart structure of the binocular microlens, the dual-bands microlens imaging system has the potential for miniaturization and could integrate with intelligent glasses for assisting intravenous injection.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"13 1\",\"pages\":\"30 - 40\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2019.1634166\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2019.1634166\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2019.1634166","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

摘要

摘要静脉显示装置可以显著提高静脉注射的成功率。然而,传统的静脉显示设备只包含近红外图像信息,不可避免地会丢失肤色信息。本文采用微加工技术制作了双目微透镜。然后,建立了一个智能双目微透镜成像系统。该系统可以同时获得具有静脉分布的近红外图像和具有实际肤色的可见光图像。此外,还提出了一种改进的图像融合算法。图像融合结果表明,该方法能够清晰地显示手部静脉的细节,并且能够很好地保留手部的背景颜色。因此,所提出的方案可以提供更真实的静脉信息。作为双目微透镜的智能结构,双频带微透镜成像系统具有小型化的潜力,可以与辅助静脉注射的智能眼镜集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binocular microlens imaging system based on micro fabrication technology and its application in vein-enhanced display
Abstract Vein display device can significantly increase the success rate of intravenous injection. However, traditional vein display devices only contain near-infrared image information, which inevitably loses skin color information. In this article, a binocular microlens was fabricated by micro-fabrication technology. Then, a smart binocular microlens imaging system is set up. By this system, the near-infrared image with venous distribution and visible light image with actual skin color can be obtained simultaneously. In addition, an improved image fusing algorithm is proposed. The image fusing result shows that the venous details can be clearly shown and the background color of the hand also can be well preserved. Therefore, the proposed scheme can provide more real vein information. As the smart structure of the binocular microlens, the dual-bands microlens imaging system has the potential for miniaturization and could integrate with intelligent glasses for assisting intravenous injection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信