{"title":"晶粒尺寸对微成形微筒装配质量的影响","authors":"Dien Hu, Jieyichen Fang, Feng Zeng, Ming-Wang Fu","doi":"10.1007/s40436-023-00456-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its grain size effect on the formability of the complicated internal features in terms of deformation behavior, material evolution, accuracy of dimensions and final components quality. The results reveal that the deformation behavior is highly affected by grain size and becomes unpredictable with increased grain size. In addition, assembly parameters including feature dimension, tolerance and coaxiality also vary with grain size, and the variation of grain size needs to be accommodated by different assembly types, viz., clearance fit or transition fit. From the microstructural evolution aspect, it was identified there were two dead zones and four shear bands, and the formation of these deformation zones was barely affected by the variation in grain size. Though bulges, cracks, and fracture induced voids were observed on the surface of the final components, tailoring the microstructure of the working material with finer grains could significantly avoid these defects. This study advances the understanding of forming microparts by extrusion processes and provides guidance for microforming of similar microparts.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 1","pages":"19 - 32"},"PeriodicalIF":4.2000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain size effect on the assembly quality of micro-scaled barrel formed by microforming\",\"authors\":\"Dien Hu, Jieyichen Fang, Feng Zeng, Ming-Wang Fu\",\"doi\":\"10.1007/s40436-023-00456-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its grain size effect on the formability of the complicated internal features in terms of deformation behavior, material evolution, accuracy of dimensions and final components quality. The results reveal that the deformation behavior is highly affected by grain size and becomes unpredictable with increased grain size. In addition, assembly parameters including feature dimension, tolerance and coaxiality also vary with grain size, and the variation of grain size needs to be accommodated by different assembly types, viz., clearance fit or transition fit. From the microstructural evolution aspect, it was identified there were two dead zones and four shear bands, and the formation of these deformation zones was barely affected by the variation in grain size. Though bulges, cracks, and fracture induced voids were observed on the surface of the final components, tailoring the microstructure of the working material with finer grains could significantly avoid these defects. This study advances the understanding of forming microparts by extrusion processes and provides guidance for microforming of similar microparts.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 1\",\"pages\":\"19 - 32\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00456-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00456-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Grain size effect on the assembly quality of micro-scaled barrel formed by microforming
In this research, a method employing micro-extrusion was designed to produce the micro-scaled barrel-shaped parts with complex geometrical features to study the feasibility of the proposed microforming method and its grain size effect on the formability of the complicated internal features in terms of deformation behavior, material evolution, accuracy of dimensions and final components quality. The results reveal that the deformation behavior is highly affected by grain size and becomes unpredictable with increased grain size. In addition, assembly parameters including feature dimension, tolerance and coaxiality also vary with grain size, and the variation of grain size needs to be accommodated by different assembly types, viz., clearance fit or transition fit. From the microstructural evolution aspect, it was identified there were two dead zones and four shear bands, and the formation of these deformation zones was barely affected by the variation in grain size. Though bulges, cracks, and fracture induced voids were observed on the surface of the final components, tailoring the microstructure of the working material with finer grains could significantly avoid these defects. This study advances the understanding of forming microparts by extrusion processes and provides guidance for microforming of similar microparts.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.