{"title":"确定双层GRS墙在交通循环荷载作用下的性能","authors":"L. Ding, J. Liu, T. Zhou, C. Xiao, H. Li","doi":"10.1680/jgein.22.00260","DOIUrl":null,"url":null,"abstract":"This study evaluates the performance of two-tiered geogrid-reinforced soil (GRS) walls subjected to traffic cyclic loading considering several influence factors. These factors herein include the offset distance (D) of walls, the number (N), amplitude (Pmax), and frequency (f) of applied cyclic loading. Seven GRS walls with a reduced-scale of 1:3 were prepared in the laboratory and employed to investigate their (i) vertical foundation pressures during construction, (ii) load-induced settlements, (iii) facing lateral displacements, (iv) vertical and horizontal earth pressures, and (v) geogrid strains under the action of cyclic loading. Experimental results demonstrate that GRS walls constructed in tiered configurations can effectively reduce vertical foundation pressures. The increasing D, as well as the decreasing N and Pmax, introduces a reduction to the above five mechanical and deformation properties. However, increasing f results in the decrease of wall settlements and facing lateral displacements, and in the increase of others. Performance of several empirical equations for predicting the vertical foundation pressures, location of maximum geogrid strains, and failure surfaces inside walls was examined using the experimental data obtained in this study. Comparisons also were performed to describe the deformation and failure surface modes of the walls after loading.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determining performance of two-tiered GRS walls subjected to traffic cyclic loading\",\"authors\":\"L. Ding, J. Liu, T. Zhou, C. Xiao, H. Li\",\"doi\":\"10.1680/jgein.22.00260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the performance of two-tiered geogrid-reinforced soil (GRS) walls subjected to traffic cyclic loading considering several influence factors. These factors herein include the offset distance (D) of walls, the number (N), amplitude (Pmax), and frequency (f) of applied cyclic loading. Seven GRS walls with a reduced-scale of 1:3 were prepared in the laboratory and employed to investigate their (i) vertical foundation pressures during construction, (ii) load-induced settlements, (iii) facing lateral displacements, (iv) vertical and horizontal earth pressures, and (v) geogrid strains under the action of cyclic loading. Experimental results demonstrate that GRS walls constructed in tiered configurations can effectively reduce vertical foundation pressures. The increasing D, as well as the decreasing N and Pmax, introduces a reduction to the above five mechanical and deformation properties. However, increasing f results in the decrease of wall settlements and facing lateral displacements, and in the increase of others. Performance of several empirical equations for predicting the vertical foundation pressures, location of maximum geogrid strains, and failure surfaces inside walls was examined using the experimental data obtained in this study. Comparisons also were performed to describe the deformation and failure surface modes of the walls after loading.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.22.00260\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.22.00260","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Determining performance of two-tiered GRS walls subjected to traffic cyclic loading
This study evaluates the performance of two-tiered geogrid-reinforced soil (GRS) walls subjected to traffic cyclic loading considering several influence factors. These factors herein include the offset distance (D) of walls, the number (N), amplitude (Pmax), and frequency (f) of applied cyclic loading. Seven GRS walls with a reduced-scale of 1:3 were prepared in the laboratory and employed to investigate their (i) vertical foundation pressures during construction, (ii) load-induced settlements, (iii) facing lateral displacements, (iv) vertical and horizontal earth pressures, and (v) geogrid strains under the action of cyclic loading. Experimental results demonstrate that GRS walls constructed in tiered configurations can effectively reduce vertical foundation pressures. The increasing D, as well as the decreasing N and Pmax, introduces a reduction to the above five mechanical and deformation properties. However, increasing f results in the decrease of wall settlements and facing lateral displacements, and in the increase of others. Performance of several empirical equations for predicting the vertical foundation pressures, location of maximum geogrid strains, and failure surfaces inside walls was examined using the experimental data obtained in this study. Comparisons also were performed to describe the deformation and failure surface modes of the walls after loading.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.