{"title":"矩阵方程的最佳接近点与正定解的存在性","authors":"S. Jain, G. Meena, R. Jain","doi":"10.28924/2291-8639-21-2023-64","DOIUrl":null,"url":null,"abstract":"In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best Proximity Point and Existence of the Positive Definite Solution for Matrix Equations\",\"authors\":\"S. Jain, G. Meena, R. Jain\",\"doi\":\"10.28924/2291-8639-21-2023-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Best Proximity Point and Existence of the Positive Definite Solution for Matrix Equations
In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.