矩阵方程的最佳接近点与正定解的存在性

IF 0.7 Q2 MATHEMATICS
S. Jain, G. Meena, R. Jain
{"title":"矩阵方程的最佳接近点与正定解的存在性","authors":"S. Jain, G. Meena, R. Jain","doi":"10.28924/2291-8639-21-2023-64","DOIUrl":null,"url":null,"abstract":"In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best Proximity Point and Existence of the Positive Definite Solution for Matrix Equations\",\"authors\":\"S. Jain, G. Meena, R. Jain\",\"doi\":\"10.28924/2291-8639-21-2023-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们定义了α−ψ−θ收缩来寻找部分有序度量空间中的最佳接近点。通过一个合适的例子对结果进行了适当的支持。第三部分主要讨论矩阵方程的正定解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best Proximity Point and Existence of the Positive Definite Solution for Matrix Equations
In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信