基于噪声指标和心理声学参数,利用人工神经网络预测调性声音烦恼

IF 0.3 4区 工程技术 Q4 ACOUSTICS
M. Sadeghian, Soroor Shekarizadeh, Milad Abbasi, S. Mousavi, Saeid Yazdanirad
{"title":"基于噪声指标和心理声学参数,利用人工神经网络预测调性声音烦恼","authors":"M. Sadeghian, Soroor Shekarizadeh, Milad Abbasi, S. Mousavi, Saeid Yazdanirad","doi":"10.3397/1/377025","DOIUrl":null,"url":null,"abstract":"The tonal noise of indoor mechanical systems causes an unpleasant sensation. The present study was conducted to predict tonal sound annoyance based on noise metrics and psychoacoustics parameters using artificial neural networks. Thirty-six signals of noise were produced by six tone\n levels, three tone frequencies, and two background noise levels in an enclosed space. Then, noise metrics and psychoacoustic parameters of the signals were determined. Subsequently, 60 subjects were asked to express their subjective perception of annoyance during exposure to various noises.\n Finally, the predictive model of annoyance was computed using the feed-forward neural networks. The initialization of weights and biases was performed using the Nguyen-Widrow method. The gradient descent with momentum and back-propagation algorithms were applied to learn the function and network\n weights, respectively. Based on the results, higher tone level, higher background noise level, lower frequency, and less sharp noise significantly increased the value of the perceived annoyance. The obtained Kaiser-Mayer-Olkin coefficient of the model was equal to 0.8. The values of recognition\n rate related to data of training and testing were computed by 0.83 and 0.91, respectively. The parameters of loudness, audible tone, and roughness compared to combined metrics were more substantial predictors of perceived annoyance.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of artificial neural networks to predict tonal sound annoyance based on noise metrics and psychoacoustics parameters\",\"authors\":\"M. Sadeghian, Soroor Shekarizadeh, Milad Abbasi, S. Mousavi, Saeid Yazdanirad\",\"doi\":\"10.3397/1/377025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tonal noise of indoor mechanical systems causes an unpleasant sensation. The present study was conducted to predict tonal sound annoyance based on noise metrics and psychoacoustics parameters using artificial neural networks. Thirty-six signals of noise were produced by six tone\\n levels, three tone frequencies, and two background noise levels in an enclosed space. Then, noise metrics and psychoacoustic parameters of the signals were determined. Subsequently, 60 subjects were asked to express their subjective perception of annoyance during exposure to various noises.\\n Finally, the predictive model of annoyance was computed using the feed-forward neural networks. The initialization of weights and biases was performed using the Nguyen-Widrow method. The gradient descent with momentum and back-propagation algorithms were applied to learn the function and network\\n weights, respectively. Based on the results, higher tone level, higher background noise level, lower frequency, and less sharp noise significantly increased the value of the perceived annoyance. The obtained Kaiser-Mayer-Olkin coefficient of the model was equal to 0.8. The values of recognition\\n rate related to data of training and testing were computed by 0.83 and 0.91, respectively. The parameters of loudness, audible tone, and roughness compared to combined metrics were more substantial predictors of perceived annoyance.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/377025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/377025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

室内机械系统的音调噪音会引起不愉快的感觉。本研究使用人工神经网络基于噪声指标和心理声学参数来预测音调声音烦恼。在一个封闭的空间中,六个音调级别、三个音调频率和两个背景噪声级别产生了三十六个噪声信号。然后,确定了信号的噪声度量和心理声学参数。随后,60名受试者被要求表达他们在接触各种噪音时对烦恼的主观感受。最后,使用前馈神经网络计算了烦恼的预测模型。权重和偏差的初始化使用Nguyen Widrow方法进行。分别应用动量梯度下降算法和反向传播算法来学习函数和网络权重。基于结果,较高的音调水平、较高的背景噪声水平、较低的频率和较低的尖锐噪声显著增加了感知烦恼的值。所获得的模型的Kaiser-Mayer-Olkin系数等于0.8。与训练和测试数据相关的识别率值分别计算为0.83和0.91。与组合指标相比,响度、可听音调和粗糙度参数是感知烦恼的更重要的预测因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of artificial neural networks to predict tonal sound annoyance based on noise metrics and psychoacoustics parameters
The tonal noise of indoor mechanical systems causes an unpleasant sensation. The present study was conducted to predict tonal sound annoyance based on noise metrics and psychoacoustics parameters using artificial neural networks. Thirty-six signals of noise were produced by six tone levels, three tone frequencies, and two background noise levels in an enclosed space. Then, noise metrics and psychoacoustic parameters of the signals were determined. Subsequently, 60 subjects were asked to express their subjective perception of annoyance during exposure to various noises. Finally, the predictive model of annoyance was computed using the feed-forward neural networks. The initialization of weights and biases was performed using the Nguyen-Widrow method. The gradient descent with momentum and back-propagation algorithms were applied to learn the function and network weights, respectively. Based on the results, higher tone level, higher background noise level, lower frequency, and less sharp noise significantly increased the value of the perceived annoyance. The obtained Kaiser-Mayer-Olkin coefficient of the model was equal to 0.8. The values of recognition rate related to data of training and testing were computed by 0.83 and 0.91, respectively. The parameters of loudness, audible tone, and roughness compared to combined metrics were more substantial predictors of perceived annoyance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信