{"title":"锆石ZS -一种用于U-Pb年龄和O-Hf同位素微分析的均质天然标准物质","authors":"Xiaoxiao Ling","doi":"10.46770/as.2022.033","DOIUrl":null,"url":null,"abstract":": A well-formed natural zircon crystal ~10 g in weight from Sri Lanka was introduced as a reference material for the geochemical microanalysis of U–Pb–O–Hf isotopes. For the U–Pb system, a total of 96 secondary ion mass spectrometry (SIMS) and 174 laser-ablation inductively coupled plasma mass spectrometry analyses showed that zircon ZS was homogeneous within a ~20 μm area level. According to chemical abrasion isotope dilution thermal ionization mass spectrometry, the U–Pb system is concordant within the uncertainties, yielding a weighted mean 206 Pb/ 238 U age of 560.6 ± 1.3 Ma (2 standard deviation (SD), n = 18) and a weighted mean 207 Pb/ 206 Pb age of 561.1 ± 3.5 Ma (2SD, n = 18). The U and Th concentrations were 570 ± 40 μg g -1 (1SD) and 132 ± 28 μg g -1 (1SD), respectively. The homogeneity of the O isotopes was confirmed by 261 SIMS analyses, and that of Hf isotopes was determined by 100 laser-ablation multi-collector inductively coupled plasma mass spectrometry (MC–ICP–MS) analyses. A weighted mean δ 18 O value of 13.69‰ ± 0.11‰ (2SD, n = 12) obtained by laser fluorination isotope ratio mass spectrometry (IRMS) and a weighted mean 176 Hf/ 177 Hf value of 0.281668 ± 0.000010 (2SD, n = 7) by solution MC–ICP–MS are recommended as the best reference values for zircon ZS.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zircon ZS - A Homogenous Natural Reference Material For U–Pb Age And O–Hf Isotope Microanalyses\",\"authors\":\"Xiaoxiao Ling\",\"doi\":\"10.46770/as.2022.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A well-formed natural zircon crystal ~10 g in weight from Sri Lanka was introduced as a reference material for the geochemical microanalysis of U–Pb–O–Hf isotopes. For the U–Pb system, a total of 96 secondary ion mass spectrometry (SIMS) and 174 laser-ablation inductively coupled plasma mass spectrometry analyses showed that zircon ZS was homogeneous within a ~20 μm area level. According to chemical abrasion isotope dilution thermal ionization mass spectrometry, the U–Pb system is concordant within the uncertainties, yielding a weighted mean 206 Pb/ 238 U age of 560.6 ± 1.3 Ma (2 standard deviation (SD), n = 18) and a weighted mean 207 Pb/ 206 Pb age of 561.1 ± 3.5 Ma (2SD, n = 18). The U and Th concentrations were 570 ± 40 μg g -1 (1SD) and 132 ± 28 μg g -1 (1SD), respectively. The homogeneity of the O isotopes was confirmed by 261 SIMS analyses, and that of Hf isotopes was determined by 100 laser-ablation multi-collector inductively coupled plasma mass spectrometry (MC–ICP–MS) analyses. A weighted mean δ 18 O value of 13.69‰ ± 0.11‰ (2SD, n = 12) obtained by laser fluorination isotope ratio mass spectrometry (IRMS) and a weighted mean 176 Hf/ 177 Hf value of 0.281668 ± 0.000010 (2SD, n = 7) by solution MC–ICP–MS are recommended as the best reference values for zircon ZS.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.033\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.033","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Zircon ZS - A Homogenous Natural Reference Material For U–Pb Age And O–Hf Isotope Microanalyses
: A well-formed natural zircon crystal ~10 g in weight from Sri Lanka was introduced as a reference material for the geochemical microanalysis of U–Pb–O–Hf isotopes. For the U–Pb system, a total of 96 secondary ion mass spectrometry (SIMS) and 174 laser-ablation inductively coupled plasma mass spectrometry analyses showed that zircon ZS was homogeneous within a ~20 μm area level. According to chemical abrasion isotope dilution thermal ionization mass spectrometry, the U–Pb system is concordant within the uncertainties, yielding a weighted mean 206 Pb/ 238 U age of 560.6 ± 1.3 Ma (2 standard deviation (SD), n = 18) and a weighted mean 207 Pb/ 206 Pb age of 561.1 ± 3.5 Ma (2SD, n = 18). The U and Th concentrations were 570 ± 40 μg g -1 (1SD) and 132 ± 28 μg g -1 (1SD), respectively. The homogeneity of the O isotopes was confirmed by 261 SIMS analyses, and that of Hf isotopes was determined by 100 laser-ablation multi-collector inductively coupled plasma mass spectrometry (MC–ICP–MS) analyses. A weighted mean δ 18 O value of 13.69‰ ± 0.11‰ (2SD, n = 12) obtained by laser fluorination isotope ratio mass spectrometry (IRMS) and a weighted mean 176 Hf/ 177 Hf value of 0.281668 ± 0.000010 (2SD, n = 7) by solution MC–ICP–MS are recommended as the best reference values for zircon ZS.
期刊介绍:
The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.