S. Bhowmick, B. Eskandari, G. Krishnamurthy, A. Alpas
{"title":"切削液中WS2颗粒对Ti-6Al-4V摩擦学行为及其加工性能的影响","authors":"S. Bhowmick, B. Eskandari, G. Krishnamurthy, A. Alpas","doi":"10.1080/17515831.2020.1838100","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tribological behaviour of Ti–6Al–4V alloy sliding against WC-Co was evaluated by employing WS2 nanoparticles blended in a cutting fluid used for machining of this alloy. Pin-on disk tests were carried out under boundary-lubricated condition using a cutting fluid (70% water and 30% oil) blended with WS2 nanoparticles (CF + WS2). When a cutting fluid with ≥ 0.5 wt.% WS2 was used, the COF of the tribosystem was reduced compared to CF + 0%WS2. The lowest COF of 0.05 was obtained when 1.0 wt.% WS2 was used. Low and stable COF values were accompanied by the formation of a tribolayer incorporating WS2 and WO3 on the WC-Co surfaces. During orthogonal machining of Ti–6Al–4V using CF + 1.0%WS2, a tribolayer with the similar composition was formed on the cutting edge of the WC-Co tool and the average cutting force was reduced by 35% compared to cutting with CF + 0%WS2. Machining with CF + 1.0%WS2 produced thinner chips. Other improvements in machining performance attained using CF + 1.0%WS2 included reduction of adhesive wear on the tool and a lower roughness of the machined surface. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"15 1","pages":"229 - 242"},"PeriodicalIF":1.6000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2020.1838100","citationCount":"3","resultStr":"{\"title\":\"Effect of WS2 particles in cutting fluid on tribological behaviour of Ti–6Al–4V and on its machining performance\",\"authors\":\"S. Bhowmick, B. Eskandari, G. Krishnamurthy, A. Alpas\",\"doi\":\"10.1080/17515831.2020.1838100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tribological behaviour of Ti–6Al–4V alloy sliding against WC-Co was evaluated by employing WS2 nanoparticles blended in a cutting fluid used for machining of this alloy. Pin-on disk tests were carried out under boundary-lubricated condition using a cutting fluid (70% water and 30% oil) blended with WS2 nanoparticles (CF + WS2). When a cutting fluid with ≥ 0.5 wt.% WS2 was used, the COF of the tribosystem was reduced compared to CF + 0%WS2. The lowest COF of 0.05 was obtained when 1.0 wt.% WS2 was used. Low and stable COF values were accompanied by the formation of a tribolayer incorporating WS2 and WO3 on the WC-Co surfaces. During orthogonal machining of Ti–6Al–4V using CF + 1.0%WS2, a tribolayer with the similar composition was formed on the cutting edge of the WC-Co tool and the average cutting force was reduced by 35% compared to cutting with CF + 0%WS2. Machining with CF + 1.0%WS2 produced thinner chips. Other improvements in machining performance attained using CF + 1.0%WS2 included reduction of adhesive wear on the tool and a lower roughness of the machined surface. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"15 1\",\"pages\":\"229 - 242\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17515831.2020.1838100\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2020.1838100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2020.1838100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of WS2 particles in cutting fluid on tribological behaviour of Ti–6Al–4V and on its machining performance
ABSTRACT Tribological behaviour of Ti–6Al–4V alloy sliding against WC-Co was evaluated by employing WS2 nanoparticles blended in a cutting fluid used for machining of this alloy. Pin-on disk tests were carried out under boundary-lubricated condition using a cutting fluid (70% water and 30% oil) blended with WS2 nanoparticles (CF + WS2). When a cutting fluid with ≥ 0.5 wt.% WS2 was used, the COF of the tribosystem was reduced compared to CF + 0%WS2. The lowest COF of 0.05 was obtained when 1.0 wt.% WS2 was used. Low and stable COF values were accompanied by the formation of a tribolayer incorporating WS2 and WO3 on the WC-Co surfaces. During orthogonal machining of Ti–6Al–4V using CF + 1.0%WS2, a tribolayer with the similar composition was formed on the cutting edge of the WC-Co tool and the average cutting force was reduced by 35% compared to cutting with CF + 0%WS2. Machining with CF + 1.0%WS2 produced thinner chips. Other improvements in machining performance attained using CF + 1.0%WS2 included reduction of adhesive wear on the tool and a lower roughness of the machined surface. GRAPHICAL ABSTRACT