纵向地震作用下船舶舱室浅水晃动的水动力分析

IF 0.7 Q4 ENGINEERING, MECHANICAL
Jianbao Yang, Yang Zhang, Duanwei Shi
{"title":"纵向地震作用下船舶舱室浅水晃动的水动力分析","authors":"Jianbao Yang, Yang Zhang, Duanwei Shi","doi":"10.13052/ijfp1439-9776.2439","DOIUrl":null,"url":null,"abstract":"Shallow water sloshing-structure interaction under the coupled longitudinal and pitch motions resulted by the longitudinal earthquake directly affects the structural safety of the shiplift. However, no matter in shiplift or other related fields, there is little research on this aspect at present. As a basis of structural dynamics analysis and earthquake resistant design, an analytical method including a developed modal system and new engineering formulas is presented to predict the hydrodynamic moment and force in the ship chamber. Based on the linear modal theory, a modal system describing shallow water sloshing under longitudinal earthquake is developed with infinite set of modal functions. Then, new engineering formulas for calculating the hydrodynamic moment and force are proposed with only retaining the lowest sloshing mode (n=1). Case simulations suggest that the maximum error of hydrodynamic moment and force between n=1 and n=100 are lower than 1.3% and 10.5%, respectively. In addition, the hydrodynamic moment resulting from pressure on the walls can be reasonably ignored, which accounts for less than 0.5% percent of total hydrodynamic moment. With respect to the currently used Housner model, the presented formulas are greatly improved in computational accuracy and rationally supplement the missing part in the seismic design part of the Design code for shiplift.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake\",\"authors\":\"Jianbao Yang, Yang Zhang, Duanwei Shi\",\"doi\":\"10.13052/ijfp1439-9776.2439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shallow water sloshing-structure interaction under the coupled longitudinal and pitch motions resulted by the longitudinal earthquake directly affects the structural safety of the shiplift. However, no matter in shiplift or other related fields, there is little research on this aspect at present. As a basis of structural dynamics analysis and earthquake resistant design, an analytical method including a developed modal system and new engineering formulas is presented to predict the hydrodynamic moment and force in the ship chamber. Based on the linear modal theory, a modal system describing shallow water sloshing under longitudinal earthquake is developed with infinite set of modal functions. Then, new engineering formulas for calculating the hydrodynamic moment and force are proposed with only retaining the lowest sloshing mode (n=1). Case simulations suggest that the maximum error of hydrodynamic moment and force between n=1 and n=100 are lower than 1.3% and 10.5%, respectively. In addition, the hydrodynamic moment resulting from pressure on the walls can be reasonably ignored, which accounts for less than 0.5% percent of total hydrodynamic moment. With respect to the currently used Housner model, the presented formulas are greatly improved in computational accuracy and rationally supplement the missing part in the seismic design part of the Design code for shiplift.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在纵向地震引起的纵向和俯仰耦合运动下,浅水晃荡结构的相互作用直接影响升船机的结构安全。然而,无论是在升船机还是其他相关领域,目前对这方面的研究都很少。作为结构动力学分析和抗震设计的基础,提出了一种包括已开发的模态系统和新的工程公式的分析方法来预测船舱内的水动力力矩和力。基于线性模态理论,建立了一个描述纵向地震作用下浅水晃动的模态系统,该系统具有无限组模态函数。然后,在只保留最低晃动模式(n=1)的情况下,提出了计算水动力力矩和力的新的工程公式。实例模拟表明,在n=1和n=100之间,水动力力矩和力的最大误差分别低于1.3%和10.5%。此外,壁上压力产生的水动力力矩可以合理忽略,其占总水动力力矩的0.5%以下。对于目前使用的Housner模型,所提出的公式在计算精度上有了很大的提高,并合理地补充了《升船机设计规范》抗震设计部分的缺失部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake
Shallow water sloshing-structure interaction under the coupled longitudinal and pitch motions resulted by the longitudinal earthquake directly affects the structural safety of the shiplift. However, no matter in shiplift or other related fields, there is little research on this aspect at present. As a basis of structural dynamics analysis and earthquake resistant design, an analytical method including a developed modal system and new engineering formulas is presented to predict the hydrodynamic moment and force in the ship chamber. Based on the linear modal theory, a modal system describing shallow water sloshing under longitudinal earthquake is developed with infinite set of modal functions. Then, new engineering formulas for calculating the hydrodynamic moment and force are proposed with only retaining the lowest sloshing mode (n=1). Case simulations suggest that the maximum error of hydrodynamic moment and force between n=1 and n=100 are lower than 1.3% and 10.5%, respectively. In addition, the hydrodynamic moment resulting from pressure on the walls can be reasonably ignored, which accounts for less than 0.5% percent of total hydrodynamic moment. With respect to the currently used Housner model, the presented formulas are greatly improved in computational accuracy and rationally supplement the missing part in the seismic design part of the Design code for shiplift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信