{"title":"各向异性阶分布及其在h分布中的应用","authors":"N. Antonić, Marko Erceg, M. Mišur","doi":"10.1142/S0219530520500165","DOIUrl":null,"url":null,"abstract":"We define distributions of anisotropic order on manifolds, and establish their immediate properties. The central result is the Schwartz kernel theorem for such distributions, allowing the representation of continuous operators from [Formula: see text] to [Formula: see text] by kernels, which we prove to be distributions of order [Formula: see text] in [Formula: see text], but higher, although still finite, order in [Formula: see text]. Our main motivation for introducing these distributions is to obtain the new result that H-distributions (Antonić and Mitrović), a recently introduced generalization of H-measures are, in fact, distributions of order 0 (i.e. Radon measures) in [Formula: see text], and of finite order in [Formula: see text]. This allows us to obtain some more precise results on H-distributions, hopefully allowing for further applications to partial differential equations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Distributions of anisotropic order and applications to H-distributions\",\"authors\":\"N. Antonić, Marko Erceg, M. Mišur\",\"doi\":\"10.1142/S0219530520500165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define distributions of anisotropic order on manifolds, and establish their immediate properties. The central result is the Schwartz kernel theorem for such distributions, allowing the representation of continuous operators from [Formula: see text] to [Formula: see text] by kernels, which we prove to be distributions of order [Formula: see text] in [Formula: see text], but higher, although still finite, order in [Formula: see text]. Our main motivation for introducing these distributions is to obtain the new result that H-distributions (Antonić and Mitrović), a recently introduced generalization of H-measures are, in fact, distributions of order 0 (i.e. Radon measures) in [Formula: see text], and of finite order in [Formula: see text]. This allows us to obtain some more precise results on H-distributions, hopefully allowing for further applications to partial differential equations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219530520500165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530520500165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Distributions of anisotropic order and applications to H-distributions
We define distributions of anisotropic order on manifolds, and establish their immediate properties. The central result is the Schwartz kernel theorem for such distributions, allowing the representation of continuous operators from [Formula: see text] to [Formula: see text] by kernels, which we prove to be distributions of order [Formula: see text] in [Formula: see text], but higher, although still finite, order in [Formula: see text]. Our main motivation for introducing these distributions is to obtain the new result that H-distributions (Antonić and Mitrović), a recently introduced generalization of H-measures are, in fact, distributions of order 0 (i.e. Radon measures) in [Formula: see text], and of finite order in [Formula: see text]. This allows us to obtain some more precise results on H-distributions, hopefully allowing for further applications to partial differential equations.