吉布斯采样器的改进

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Taeyoung Park, Seunghan Lee
{"title":"吉布斯采样器的改进","authors":"Taeyoung Park, Seunghan Lee","doi":"10.1002/wics.1546","DOIUrl":null,"url":null,"abstract":"The Gibbs sampler is a simple but very powerful algorithm used to simulate from a complex high‐dimensional distribution. It is particularly useful in Bayesian analysis when a complex Bayesian model involves a number of model parameters and the conditional posterior distribution of each component given the others can be derived as a standard distribution. In the presence of a strong correlation structure among components, however, the Gibbs sampler can be criticized for its slow convergence. Here we discuss several algorithmic strategies such as blocking, collapsing, and partial collapsing that are available for improving the convergence characteristics of the Gibbs sampler.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1546","citationCount":"4","resultStr":"{\"title\":\"Improving the Gibbs sampler\",\"authors\":\"Taeyoung Park, Seunghan Lee\",\"doi\":\"10.1002/wics.1546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gibbs sampler is a simple but very powerful algorithm used to simulate from a complex high‐dimensional distribution. It is particularly useful in Bayesian analysis when a complex Bayesian model involves a number of model parameters and the conditional posterior distribution of each component given the others can be derived as a standard distribution. In the presence of a strong correlation structure among components, however, the Gibbs sampler can be criticized for its slow convergence. Here we discuss several algorithmic strategies such as blocking, collapsing, and partial collapsing that are available for improving the convergence characteristics of the Gibbs sampler.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1546\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1546\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1546","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

吉布斯采样器是一种简单但功能强大的算法,用于模拟复杂的高维分布。它在贝叶斯分析中特别有用,当一个复杂的贝叶斯模型涉及许多模型参数,并且在给定其他成分的情况下,每个成分的条件后验分布可以导出为标准分布。然而,在组分之间存在强相关结构的情况下,吉布斯采样器可能会因其缓慢收敛而受到批评。在这里,我们讨论了几种算法策略,如阻塞,坍缩和部分坍缩,可用于改善吉布斯采样器的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Gibbs sampler
The Gibbs sampler is a simple but very powerful algorithm used to simulate from a complex high‐dimensional distribution. It is particularly useful in Bayesian analysis when a complex Bayesian model involves a number of model parameters and the conditional posterior distribution of each component given the others can be derived as a standard distribution. In the presence of a strong correlation structure among components, however, the Gibbs sampler can be criticized for its slow convergence. Here we discuss several algorithmic strategies such as blocking, collapsing, and partial collapsing that are available for improving the convergence characteristics of the Gibbs sampler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信