正特性曲线上的Frobenius投影结构

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuichiro Hoshi
{"title":"正特性曲线上的Frobenius投影结构","authors":"Yuichiro Hoshi","doi":"10.4171/prims/56-2-5","DOIUrl":null,"url":null,"abstract":"— In the present paper, we study Frobenius-projective structures on projective smooth curves in positive characteristic. The notion of Frobenius-projective structures may be regarded as an analogue, in positive characteristic, of the notion of complex projective structures in the classical theory of Riemann surfaces. By means of the notion of Frobeniusprojective structures, we obtain a relationship between a certain rational function, i.e., a pseudo-coordinate, and a certain collection of data which may be regarded as an analogue, in positive characteristic, of the notion of indigenous bundles in the classical theory of Riemann surfaces, i.e., a Frobenius-indigenous structure. As an application of this relationship, we also prove the existence of certain Frobenius-destabilized locally free coherent sheaves of rank two.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-2-5","citationCount":"10","resultStr":"{\"title\":\"Frobenius-Projective Structures on Curves in Positive Characteristic\",\"authors\":\"Yuichiro Hoshi\",\"doi\":\"10.4171/prims/56-2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— In the present paper, we study Frobenius-projective structures on projective smooth curves in positive characteristic. The notion of Frobenius-projective structures may be regarded as an analogue, in positive characteristic, of the notion of complex projective structures in the classical theory of Riemann surfaces. By means of the notion of Frobeniusprojective structures, we obtain a relationship between a certain rational function, i.e., a pseudo-coordinate, and a certain collection of data which may be regarded as an analogue, in positive characteristic, of the notion of indigenous bundles in the classical theory of Riemann surfaces, i.e., a Frobenius-indigenous structure. As an application of this relationship, we also prove the existence of certain Frobenius-destabilized locally free coherent sheaves of rank two.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-2-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-2-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-2-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

--本文研究了具有正特性的射影光滑曲线上的Frobenius射影结构。Frobenius投影结构的概念可以看作是经典黎曼曲面理论中复投影结构概念的一个正类似物。借助于Frobenius投影结构的概念,我们得到了某个有理函数(即伪坐标)与某个数据集之间的关系,该数据集可以被视为黎曼曲面经典理论中的固有丛概念(即Frobeniu固有结构)的正性类似物。作为这种关系的一个应用,我们还证明了某些Frobenius不稳定的二阶局部自由相干簇的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius-Projective Structures on Curves in Positive Characteristic
— In the present paper, we study Frobenius-projective structures on projective smooth curves in positive characteristic. The notion of Frobenius-projective structures may be regarded as an analogue, in positive characteristic, of the notion of complex projective structures in the classical theory of Riemann surfaces. By means of the notion of Frobeniusprojective structures, we obtain a relationship between a certain rational function, i.e., a pseudo-coordinate, and a certain collection of data which may be regarded as an analogue, in positive characteristic, of the notion of indigenous bundles in the classical theory of Riemann surfaces, i.e., a Frobenius-indigenous structure. As an application of this relationship, we also prove the existence of certain Frobenius-destabilized locally free coherent sheaves of rank two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信