余代数上对称扭曲部分协同的裂隙上拓

IF 0.5 4区 数学 Q3 MATHEMATICS
Q.-G. Chen, B. Yang
{"title":"余代数上对称扭曲部分协同的裂隙上拓","authors":"Q.-G. Chen, B. Yang","doi":"10.18910/72321","DOIUrl":null,"url":null,"abstract":"In this paper, we will introduce the concepts of symmetric twisted partial Hopf coactions, and discuss under which conditions a given symmetric twisted partial Hopf coaction is globalizable. Then we will introduce the notion of partial cleft coextensions which are dual to partial cleft extensions introduced by M. M. S. Alves et.al., and discuss its relation with partial crossed coproducts introduced by the first author of this paper, which covers the classical results in classical Hopf algebra theory.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"301-322"},"PeriodicalIF":0.5000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleft Coextension for symmetric twisted partial coactions on coalgebras\",\"authors\":\"Q.-G. Chen, B. Yang\",\"doi\":\"10.18910/72321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will introduce the concepts of symmetric twisted partial Hopf coactions, and discuss under which conditions a given symmetric twisted partial Hopf coaction is globalizable. Then we will introduce the notion of partial cleft coextensions which are dual to partial cleft extensions introduced by M. M. S. Alves et.al., and discuss its relation with partial crossed coproducts introduced by the first author of this paper, which covers the classical results in classical Hopf algebra theory.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"301-322\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/72321\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/72321","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了对称扭曲部分Hopf协同的概念,并讨论了给定对称扭曲部分Hopf协同在哪些条件下是可全局的。然后我们将引入部分裂共延的概念,它是M. M. S. Alves等人引入的部分裂共延的对偶。,并讨论了它与第一作者所介绍的部分交叉余积的关系,其中涵盖了经典Hopf代数理论中的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cleft Coextension for symmetric twisted partial coactions on coalgebras
In this paper, we will introduce the concepts of symmetric twisted partial Hopf coactions, and discuss under which conditions a given symmetric twisted partial Hopf coaction is globalizable. Then we will introduce the notion of partial cleft coextensions which are dual to partial cleft extensions introduced by M. M. S. Alves et.al., and discuss its relation with partial crossed coproducts introduced by the first author of this paper, which covers the classical results in classical Hopf algebra theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信