基于k近邻动态计算的航空点云分类方法

IF 1 Q4 ENGINEERING, CIVIL
I. M. Pârvu, E. Özdemir, Fabio Remondino
{"title":"基于k近邻动态计算的航空点云分类方法","authors":"I. M. Pârvu, E. Özdemir, Fabio Remondino","doi":"10.2478/jaes-2020-0023","DOIUrl":null,"url":null,"abstract":"Abstract The paper reports some methods to select the optimal number of neighbors and to use eigenfeatures for aerial point cloud classification. In the literature, the neighborhood selection is performed using different methods. In this paper, we propose an approach that uses the region growing algorithm. The input data is an aerial point cloud, part of the Romanian Dataset from LAKI II Project. To test our approach, we used a small dataset from the city of Marghita, Bihor County. We report the technical background for classification process and all technical details of the workflow used with insight analyses and comparisons. The work was realized within the VOLTA project (VOLTA, 2017), a RISE Marie-Curie action designed to do research and innovation activities among partners and to exchange knowledge, methods and workflows in the geospatial field.","PeriodicalId":44808,"journal":{"name":"Journal of Applied Engineering Sciences","volume":"10 1","pages":"155 - 162"},"PeriodicalIF":1.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerial Point Cloud Classification Using an Alternative Approach for the Dynamic Computation of K-Nearest Neighbors\",\"authors\":\"I. M. Pârvu, E. Özdemir, Fabio Remondino\",\"doi\":\"10.2478/jaes-2020-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper reports some methods to select the optimal number of neighbors and to use eigenfeatures for aerial point cloud classification. In the literature, the neighborhood selection is performed using different methods. In this paper, we propose an approach that uses the region growing algorithm. The input data is an aerial point cloud, part of the Romanian Dataset from LAKI II Project. To test our approach, we used a small dataset from the city of Marghita, Bihor County. We report the technical background for classification process and all technical details of the workflow used with insight analyses and comparisons. The work was realized within the VOLTA project (VOLTA, 2017), a RISE Marie-Curie action designed to do research and innovation activities among partners and to exchange knowledge, methods and workflows in the geospatial field.\",\"PeriodicalId\":44808,\"journal\":{\"name\":\"Journal of Applied Engineering Sciences\",\"volume\":\"10 1\",\"pages\":\"155 - 162\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jaes-2020-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jaes-2020-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文报道了一些选择最佳邻居数量和使用本征特征进行航空点云分类的方法。在文献中,邻域选择是使用不同的方法进行的。在本文中,我们提出了一种使用区域增长算法的方法。输入数据是一个空中点云,是LAKI II项目罗马尼亚数据集的一部分。为了测试我们的方法,我们使用了比霍尔县玛吉塔市的一个小数据集。我们报告了分类过程的技术背景以及用于洞察分析和比较的工作流程的所有技术细节。这项工作是在VOLTA项目(VOLTA,2017)中实现的,这是一项RISE玛丽·居里行动,旨在在合作伙伴之间开展研究和创新活动,并交流地理空间领域的知识、方法和工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerial Point Cloud Classification Using an Alternative Approach for the Dynamic Computation of K-Nearest Neighbors
Abstract The paper reports some methods to select the optimal number of neighbors and to use eigenfeatures for aerial point cloud classification. In the literature, the neighborhood selection is performed using different methods. In this paper, we propose an approach that uses the region growing algorithm. The input data is an aerial point cloud, part of the Romanian Dataset from LAKI II Project. To test our approach, we used a small dataset from the city of Marghita, Bihor County. We report the technical background for classification process and all technical details of the workflow used with insight analyses and comparisons. The work was realized within the VOLTA project (VOLTA, 2017), a RISE Marie-Curie action designed to do research and innovation activities among partners and to exchange knowledge, methods and workflows in the geospatial field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
9.10%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信