N. Chalmers, Abhishek Mishra, Damon McDougall, T. Warburton
{"title":"HipBone:性能可移植的图形处理单元,加速了NekBone基准的c++版本","authors":"N. Chalmers, Abhishek Mishra, Damon McDougall, T. Warburton","doi":"10.1177/10943420231178552","DOIUrl":null,"url":null,"abstract":"We present hipBone, an open-source performance-portable proxy application for the Nek5000 (and NekRS) computational fluid dynamics applications. HipBone is a fully GPU-accelerated C++ implementation of the original NekBone CPU proxy application with several novel algorithmic and implementation improvements which optimize its performance on modern fine-grain parallel GPU accelerators. Our optimizations include a conversion to store the degrees of freedom of the problem in assembled form in order to reduce the amount of data moved during the main iteration and a portable implementation of the main Poisson operator kernel. We demonstrate near-roofline performance of the operator kernel on three different modern GPU accelerators from two different vendors. We present a novel algorithm for splitting the application of the Poisson operator on GPUs which aggressively hides MPI communication required for both halo exchange and assembly. Our implementation of nearest-neighbor MPI communication then leverages several different routing algorithms and GPU-Direct RDMA capabilities, when available, which improves scalability of the benchmark. We demonstrate the performance of hipBone on three different clusters housed at Oak Ridge National Laboratory, namely, the Summit supercomputer and the Frontier early-access clusters, Spock and Crusher. Our tests demonstrate both portability across different clusters and very good scaling efficiency, especially on large problems.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"560 - 577"},"PeriodicalIF":3.5000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HipBone: A performance-portable graphics processing unit-accelerated C++ version of the NekBone benchmark\",\"authors\":\"N. Chalmers, Abhishek Mishra, Damon McDougall, T. Warburton\",\"doi\":\"10.1177/10943420231178552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present hipBone, an open-source performance-portable proxy application for the Nek5000 (and NekRS) computational fluid dynamics applications. HipBone is a fully GPU-accelerated C++ implementation of the original NekBone CPU proxy application with several novel algorithmic and implementation improvements which optimize its performance on modern fine-grain parallel GPU accelerators. Our optimizations include a conversion to store the degrees of freedom of the problem in assembled form in order to reduce the amount of data moved during the main iteration and a portable implementation of the main Poisson operator kernel. We demonstrate near-roofline performance of the operator kernel on three different modern GPU accelerators from two different vendors. We present a novel algorithm for splitting the application of the Poisson operator on GPUs which aggressively hides MPI communication required for both halo exchange and assembly. Our implementation of nearest-neighbor MPI communication then leverages several different routing algorithms and GPU-Direct RDMA capabilities, when available, which improves scalability of the benchmark. We demonstrate the performance of hipBone on three different clusters housed at Oak Ridge National Laboratory, namely, the Summit supercomputer and the Frontier early-access clusters, Spock and Crusher. Our tests demonstrate both portability across different clusters and very good scaling efficiency, especially on large problems.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"37 1\",\"pages\":\"560 - 577\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420231178552\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231178552","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
HipBone: A performance-portable graphics processing unit-accelerated C++ version of the NekBone benchmark
We present hipBone, an open-source performance-portable proxy application for the Nek5000 (and NekRS) computational fluid dynamics applications. HipBone is a fully GPU-accelerated C++ implementation of the original NekBone CPU proxy application with several novel algorithmic and implementation improvements which optimize its performance on modern fine-grain parallel GPU accelerators. Our optimizations include a conversion to store the degrees of freedom of the problem in assembled form in order to reduce the amount of data moved during the main iteration and a portable implementation of the main Poisson operator kernel. We demonstrate near-roofline performance of the operator kernel on three different modern GPU accelerators from two different vendors. We present a novel algorithm for splitting the application of the Poisson operator on GPUs which aggressively hides MPI communication required for both halo exchange and assembly. Our implementation of nearest-neighbor MPI communication then leverages several different routing algorithms and GPU-Direct RDMA capabilities, when available, which improves scalability of the benchmark. We demonstrate the performance of hipBone on three different clusters housed at Oak Ridge National Laboratory, namely, the Summit supercomputer and the Frontier early-access clusters, Spock and Crusher. Our tests demonstrate both portability across different clusters and very good scaling efficiency, especially on large problems.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.