基于去噪卷积神经网络和注意机制的图像分类多特征融合模型

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingsi Zhang, Xiaosheng Yu, Xiaoliang Lei, Chengdong Wu
{"title":"基于去噪卷积神经网络和注意机制的图像分类多特征融合模型","authors":"Jingsi Zhang, Xiaosheng Yu, Xiaoliang Lei, Chengdong Wu","doi":"10.4018/ijsir.324074","DOIUrl":null,"url":null,"abstract":"Spatial location features extracted by denoising convolutional neural network. At this time, an attention mechanism is introduced into denoising convolutional neural network. The dual attention model of local area is presented from two dimensions of channel and space—channel attention mechanism weights channel and spatial attention mechanism weights location. A variety of machine learning methods are used to classify and train different features. Multi-semantic features and heterogeneous features are fused by adaptive weighted fusion algorithm. Finally, the data sets Cifar-10, STL-10, Cifar-100 and GHIM-1OK are verified on the proposed method. Compared with a single semantic feature, the accuracy is improved by 10%-15%. Compared with several advanced algorithms, the performance has a significant advantage, which proves the complementarity of heterogeneous features and multi-network semantic features and the effectiveness of the adaptive weighted fusion algorithm.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification\",\"authors\":\"Jingsi Zhang, Xiaosheng Yu, Xiaoliang Lei, Chengdong Wu\",\"doi\":\"10.4018/ijsir.324074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial location features extracted by denoising convolutional neural network. At this time, an attention mechanism is introduced into denoising convolutional neural network. The dual attention model of local area is presented from two dimensions of channel and space—channel attention mechanism weights channel and spatial attention mechanism weights location. A variety of machine learning methods are used to classify and train different features. Multi-semantic features and heterogeneous features are fused by adaptive weighted fusion algorithm. Finally, the data sets Cifar-10, STL-10, Cifar-100 and GHIM-1OK are verified on the proposed method. Compared with a single semantic feature, the accuracy is improved by 10%-15%. Compared with several advanced algorithms, the performance has a significant advantage, which proves the complementarity of heterogeneous features and multi-network semantic features and the effectiveness of the adaptive weighted fusion algorithm.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsir.324074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.324074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

利用卷积神经网络去噪提取空间位置特征。在卷积神经网络去噪中引入了注意机制。从通道和空间两个维度提出了局部区域的双重注意模型——通道注意机制权重通道和空间注意机制权重位置。各种各样的机器学习方法被用来分类和训练不同的特征。采用自适应加权融合算法融合多语义特征和异构特征。最后,对Cifar-10、STL-10、Cifar-100和GHIM-1OK数据集进行了验证。与单个语义特征相比,准确率提高了10%-15%。与几种先进算法相比,该算法具有显著的性能优势,证明了异构特征与多网络语义特征的互补性和自适应加权融合算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification
Spatial location features extracted by denoising convolutional neural network. At this time, an attention mechanism is introduced into denoising convolutional neural network. The dual attention model of local area is presented from two dimensions of channel and space—channel attention mechanism weights channel and spatial attention mechanism weights location. A variety of machine learning methods are used to classify and train different features. Multi-semantic features and heterogeneous features are fused by adaptive weighted fusion algorithm. Finally, the data sets Cifar-10, STL-10, Cifar-100 and GHIM-1OK are verified on the proposed method. Compared with a single semantic feature, the accuracy is improved by 10%-15%. Compared with several advanced algorithms, the performance has a significant advantage, which proves the complementarity of heterogeneous features and multi-network semantic features and the effectiveness of the adaptive weighted fusion algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Swarm Intelligence Research
International Journal of Swarm Intelligence Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.50
自引率
0.00%
发文量
76
期刊介绍: The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信