{"title":"把握时机:使用Cox模型和概率解释二进制面板数据","authors":"Shawna K. Metzger, Benjamin T. Jones","doi":"10.1017/pan.2021.14","DOIUrl":null,"url":null,"abstract":"Abstract Logit and probit (L/P) models are a mainstay of binary time-series cross-sectional (BTSCS) analyses. Researchers include cubic splines or time polynomials to acknowledge the temporal element inherent in these data. However, L/P models cannot easily accommodate three other aspects of the data’s temporality: whether covariate effects are conditional on time, whether the process of interest is causally complex, and whether our functional form assumption regarding time’s effect is correct. Failing to account for any of these issues amounts to misspecification bias, threatening our inferences’ validity. We argue scholars should consider using Cox duration models when analyzing BTSCS data, as they create fewer opportunities for such misspecification bias, while also having the ability to assess the same hypotheses as L/P. We use Monte Carlo simulations to bring new evidence to light showing Cox models perform just as well—and sometimes better—than logit models in a basic BTSCS setting, and perform considerably better in more complex BTSCS situations. In addition, we highlight a new interpretation technique for Cox models—transition probabilities—to make Cox model results more readily interpretable. We use an application from interstate conflict to demonstrate our points.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"30 1","pages":"151 - 166"},"PeriodicalIF":4.7000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Getting Time Right: Using Cox Models and Probabilities to Interpret Binary Panel Data\",\"authors\":\"Shawna K. Metzger, Benjamin T. Jones\",\"doi\":\"10.1017/pan.2021.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Logit and probit (L/P) models are a mainstay of binary time-series cross-sectional (BTSCS) analyses. Researchers include cubic splines or time polynomials to acknowledge the temporal element inherent in these data. However, L/P models cannot easily accommodate three other aspects of the data’s temporality: whether covariate effects are conditional on time, whether the process of interest is causally complex, and whether our functional form assumption regarding time’s effect is correct. Failing to account for any of these issues amounts to misspecification bias, threatening our inferences’ validity. We argue scholars should consider using Cox duration models when analyzing BTSCS data, as they create fewer opportunities for such misspecification bias, while also having the ability to assess the same hypotheses as L/P. We use Monte Carlo simulations to bring new evidence to light showing Cox models perform just as well—and sometimes better—than logit models in a basic BTSCS setting, and perform considerably better in more complex BTSCS situations. In addition, we highlight a new interpretation technique for Cox models—transition probabilities—to make Cox model results more readily interpretable. We use an application from interstate conflict to demonstrate our points.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"30 1\",\"pages\":\"151 - 166\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2021.14\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2021.14","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Getting Time Right: Using Cox Models and Probabilities to Interpret Binary Panel Data
Abstract Logit and probit (L/P) models are a mainstay of binary time-series cross-sectional (BTSCS) analyses. Researchers include cubic splines or time polynomials to acknowledge the temporal element inherent in these data. However, L/P models cannot easily accommodate three other aspects of the data’s temporality: whether covariate effects are conditional on time, whether the process of interest is causally complex, and whether our functional form assumption regarding time’s effect is correct. Failing to account for any of these issues amounts to misspecification bias, threatening our inferences’ validity. We argue scholars should consider using Cox duration models when analyzing BTSCS data, as they create fewer opportunities for such misspecification bias, while also having the ability to assess the same hypotheses as L/P. We use Monte Carlo simulations to bring new evidence to light showing Cox models perform just as well—and sometimes better—than logit models in a basic BTSCS setting, and perform considerably better in more complex BTSCS situations. In addition, we highlight a new interpretation technique for Cox models—transition probabilities—to make Cox model results more readily interpretable. We use an application from interstate conflict to demonstrate our points.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.