L. Simon, M. Makádi, Z. Uri, Szabolcs Vígh, Katalin Irinyiné-Oláh, G. Vincze, C. Tóth
{"title":"用废液和木灰处理能量柳叶片中有毒元素和叶绿素荧光的植物提取","authors":"L. Simon, M. Makádi, Z. Uri, Szabolcs Vígh, Katalin Irinyiné-Oláh, G. Vincze, C. Tóth","doi":"10.1556/0088.2022.00122","DOIUrl":null,"url":null,"abstract":"Open-field small plot long-term experiment was set up during 2011 with willow (Salix triandra × S. viminalis ‘Inger’), grown as a short rotation coppice energy crop in Nyíregyháza, Hungary. The sandy loam Cambisol with neutral pH was treated three times (2011, 2013, and 2016) with 15 t ha–1 municipal sewage sludge compost (MSSC) and with 600 kg ha–1 (2011, 2013) or 300 kg ha–1 (2016) wood ash (WA). In 2018 the MSSC-treated plots were amended with 7.5 t ha–1 municipal sewage sediment (MSS), and 300 kg ha–1 WA. MSSC and WA or MSS and WA were also applied to the soil in combinations during all treatments. Control plots remained untreated since 2011. Repeated application of wastewater solids (MSSC, MSS) and wood ash (WA) significantly enhanced the amounts of As (up to +287%), Ba, Cd (up to +192%), Cu, Mn, Pb, and Zn in the topsoil of willows. The combined application of MSSC+MSS+WA resulted in significantly higher Mn and Zn and lower As Ba, Cd Cr, and Pb concentrations in topsoil than MSSC+MSS treatment of soil without WA. Nitrogen concentrations in leaves of treated plants were generally slightly lower or similar to control. All soil treatments significantly enhanced the uptake or accumulation of nutrient elements (Ca, K, Mg, P) and potentially toxic elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in the leaves of willows during 2018, 2019, and 2020. Significantly higher Mn or Zn concentrations were measured in MSSC+MSS+WA than in MSSC+MSS treatments. Significant amounts of Cd (up to 1.11 mg kg–1) or Zn (up to 183 mg kg–1) can be translocated (phytoextracted) from a soil amended with wastewater solids or wood ash to willow leaves. In 2018 the treatments decreased the chlorophyll fluorescence values, while in 2019 and 2020 the light adapted fluorescence yield (Y) values were higher in treated than in control plants.","PeriodicalId":34893,"journal":{"name":"Agrokemia es Talajtan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phytoextraction of toxic elements and chlorophyll fluorescence in the leaves of energy willow (Salix sp.), treated with wastewater solids and wood ash\",\"authors\":\"L. Simon, M. Makádi, Z. Uri, Szabolcs Vígh, Katalin Irinyiné-Oláh, G. Vincze, C. Tóth\",\"doi\":\"10.1556/0088.2022.00122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open-field small plot long-term experiment was set up during 2011 with willow (Salix triandra × S. viminalis ‘Inger’), grown as a short rotation coppice energy crop in Nyíregyháza, Hungary. The sandy loam Cambisol with neutral pH was treated three times (2011, 2013, and 2016) with 15 t ha–1 municipal sewage sludge compost (MSSC) and with 600 kg ha–1 (2011, 2013) or 300 kg ha–1 (2016) wood ash (WA). In 2018 the MSSC-treated plots were amended with 7.5 t ha–1 municipal sewage sediment (MSS), and 300 kg ha–1 WA. MSSC and WA or MSS and WA were also applied to the soil in combinations during all treatments. Control plots remained untreated since 2011. Repeated application of wastewater solids (MSSC, MSS) and wood ash (WA) significantly enhanced the amounts of As (up to +287%), Ba, Cd (up to +192%), Cu, Mn, Pb, and Zn in the topsoil of willows. The combined application of MSSC+MSS+WA resulted in significantly higher Mn and Zn and lower As Ba, Cd Cr, and Pb concentrations in topsoil than MSSC+MSS treatment of soil without WA. Nitrogen concentrations in leaves of treated plants were generally slightly lower or similar to control. All soil treatments significantly enhanced the uptake or accumulation of nutrient elements (Ca, K, Mg, P) and potentially toxic elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in the leaves of willows during 2018, 2019, and 2020. Significantly higher Mn or Zn concentrations were measured in MSSC+MSS+WA than in MSSC+MSS treatments. Significant amounts of Cd (up to 1.11 mg kg–1) or Zn (up to 183 mg kg–1) can be translocated (phytoextracted) from a soil amended with wastewater solids or wood ash to willow leaves. In 2018 the treatments decreased the chlorophyll fluorescence values, while in 2019 and 2020 the light adapted fluorescence yield (Y) values were higher in treated than in control plants.\",\"PeriodicalId\":34893,\"journal\":{\"name\":\"Agrokemia es Talajtan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrokemia es Talajtan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/0088.2022.00122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrokemia es Talajtan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/0088.2022.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
摘要
2011年,在匈牙利Nyíregyháza用柳树(Salix triandra×S.viminalis‘Inger’)进行了露地小地块长期试验,柳树是一种短轮作的矮林能源作物。用15 t ha–1城市污水污泥堆肥(MSSC)和600 kg ha–1(2011年、2013年)或300 kg ha–2(2016年)木灰(WA)对中性pH的沙壤土表层土进行三次处理(2011年,2013年和2016年)。2018年,MSSC处理的地块被修改为7.5 t ha–1城市污水沉积物(MSS)和300 kg ha–1 WA。在所有处理过程中,还将MSSC和WA或MSS和WA组合施用于土壤。自2011年以来,对照地块仍未得到处理。重复施用废水固体(MSSC、MSS)和木灰(WA)显著提高了柳树表层土壤中As(高达+287%)、Ba、Cd(高达+192%)、Cu、Mn、Pb和Zn的含量。与MSSC+MSS处理的无WA土壤相比,MSSC+MSS+WA联合施用可显著提高表层土壤中的Mn和Zn浓度,降低As、Ba、Cd、Cr和Pb浓度。处理植物叶片中的氮浓度通常略低于或类似于对照。2018年、2019年和2020年,所有土壤处理都显著提高了柳树叶片中营养元素(Ca、K、Mg、P)和潜在有毒元素(As、Ba、Cd、Cr、Cu、Mn、Ni、Pb和Zn)的吸收或积累。在MSSC+MSS+WA中测得的Mn或Zn浓度显著高于MSSC+MSS处理。大量的Cd(高达1.11 mg kg–1)或Zn(高达183 mg kg–2)可以从用废水固体或木灰改良的土壤中转移(植物提取)到柳叶上。2018年,处理降低了叶绿素荧光值,而在2019年和2020年,处理植物的光适应荧光产量(Y)值高于对照植物。
Phytoextraction of toxic elements and chlorophyll fluorescence in the leaves of energy willow (Salix sp.), treated with wastewater solids and wood ash
Open-field small plot long-term experiment was set up during 2011 with willow (Salix triandra × S. viminalis ‘Inger’), grown as a short rotation coppice energy crop in Nyíregyháza, Hungary. The sandy loam Cambisol with neutral pH was treated three times (2011, 2013, and 2016) with 15 t ha–1 municipal sewage sludge compost (MSSC) and with 600 kg ha–1 (2011, 2013) or 300 kg ha–1 (2016) wood ash (WA). In 2018 the MSSC-treated plots were amended with 7.5 t ha–1 municipal sewage sediment (MSS), and 300 kg ha–1 WA. MSSC and WA or MSS and WA were also applied to the soil in combinations during all treatments. Control plots remained untreated since 2011. Repeated application of wastewater solids (MSSC, MSS) and wood ash (WA) significantly enhanced the amounts of As (up to +287%), Ba, Cd (up to +192%), Cu, Mn, Pb, and Zn in the topsoil of willows. The combined application of MSSC+MSS+WA resulted in significantly higher Mn and Zn and lower As Ba, Cd Cr, and Pb concentrations in topsoil than MSSC+MSS treatment of soil without WA. Nitrogen concentrations in leaves of treated plants were generally slightly lower or similar to control. All soil treatments significantly enhanced the uptake or accumulation of nutrient elements (Ca, K, Mg, P) and potentially toxic elements (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in the leaves of willows during 2018, 2019, and 2020. Significantly higher Mn or Zn concentrations were measured in MSSC+MSS+WA than in MSSC+MSS treatments. Significant amounts of Cd (up to 1.11 mg kg–1) or Zn (up to 183 mg kg–1) can be translocated (phytoextracted) from a soil amended with wastewater solids or wood ash to willow leaves. In 2018 the treatments decreased the chlorophyll fluorescence values, while in 2019 and 2020 the light adapted fluorescence yield (Y) values were higher in treated than in control plants.
期刊介绍:
The journal publishes original papers with English summaries, reports on conferences, book reviews, contributed by Hungarian and foreign authors in the field of soil science, agricultural chemistry, soil microbiology and soil biochemistry.Papers and reviews only in Hungarian.